SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(LaCourse S. M.) "

Sökning: WFRF:(LaCourse S. M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loisel, J., et al. (författare)
  • Expert assessment of future vulnerability of the global peatland carbon sink
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:1, s. 70-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.
  •  
2.
  •  
3.
  • Gallego-Sala, Angela V., et al. (författare)
  • Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:10, s. 907-
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
  •  
4.
  • LaCourse, S. M., et al. (författare)
  • Importance of inclusion of pregnant and breastfeeding women in COVID-19 therapeutic trials
  • 2020
  • Ingår i: Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. - : Oxford University Press (OUP). - 1537-6591. ; 71:15, s. 879-881
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigators are employing unprecedented innovation in the design of clinical trials to rapidly and rigorously assess potentially promising therapies for COVID-19; this is in stark contrast to the continued near universal regressive practice of exclusion of pregnant and breastfeeding women from these trials. The few trials which allow their inclusion focus on post-exposure prophylaxis or outpatient treatment of milder disease, limiting the options available to pregnant women with severe COVID-19 to compassionate use of remdesivir, or off-label drug use of hydroxychloroquine or other therapies. These restrictions were put in place despite experience with these drugs in pregnant women. In this Viewpoint, we call attention to the need and urgency to engage pregnant women in COVID-19 treatment trials now in order to develop data-driven recommendations regarding the risks and benefits of therapies in this unique but not uncommon population. © The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
  •  
5.
  • Treat, Claire C., et al. (författare)
  • Widespread global peatland establishment and persistence over the last 130,000 y
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:11, s. 4822-4827
  • Tidskriftsartikel (refereegranskat)abstract
    • Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (> 40 degrees N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy