SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laakso Mervi) "

Sökning: WFRF:(Laakso Mervi)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gruvberger, Sofia, et al. (författare)
  • Estrogen receptor beta expression is associated with tamoxifen response in ER alpha-negative breast carcinoma
  • 2007
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 13:7, s. 1987-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Endocrine therapies, such as tamoxifen, are commonly given to most patients with estrogen receptor (ERalpha)-positive breast carcinoma but are not indicated for persons with ERalpha-negative cancer. The factors responsible for response to tamoxifen in 5% to 10% of patients with ERalpha-negative tumors are not clear. The aim of the present study was to elucidate the biology and prognostic role of the second ER, ERbeta, in patients treated with adjuvant tamoxifen.EXPERIMENTAL DESIGN: We investigated ERbeta by immunohistochemistry in 353 stage II primary breast tumors from patients treated with 2 years adjuvant tamoxifen, and generated gene expression profiles for a representative subset of 88 tumors.RESULTS: ERbeta was associated with increased survival (distant disease-free survival, P = 0.01; overall survival, P = 0.22), and in particular within ERalpha-negative patients (P = 0.003; P = 0.04), but not in the ERalpha-positive subgroup (P = 0.49; P = 0.88). Lack of ERbeta conferred early relapse (hazard ratio, 14; 95% confidence interval, 1.8-106; P = 0.01) within the ERalpha-negative subgroup even after adjustment for other markers. ERalpha was an independent marker only within the ERbeta-negative tumors (hazard ratio, 0.44; 95% confidence interval, 0.21-0.89; P = 0.02). An ERbeta gene expression profile was identified and was markedly different from the ERalpha signature.CONCLUSION: Expression of ERbeta is an independent marker for favorable prognosis after adjuvant tamoxifen treatment in ERalpha-negative breast cancer patients and involves a gene expression program distinct from ERalpha. These results may be highly clinically significant, because in the United States alone, approximately 10,000 women are diagnosed annually with ERalpha-negative/ERbeta-positive breast carcinoma and may benefit from adjuvant tamoxifen.
  •  
2.
  • Laakso, Mervi, et al. (författare)
  • Basoluminal carcinoma: A new biologically and prognostically distinct entity between basal and luminal breast cancer
  • 2006
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 12:14, s. 4185-4191
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Breast carcinomas expressing basal epithelium cytokeratins constitute a tumor subgroup that is typically hormone receptor negative and shows a distinct gene expression profile. Based on variable basal cytokeratin immunostaining patterns, we hypothesized that the "basal phenotype" tumor group may comprise more than one biological entity. Experimental Design: Basal cytokeratins 5 and 14 (CK5/14) were stained by immunohistochemistry and the percentage of positive cells was defined by image analysis. The results thus obtained were compared with clinicopathologic characteristics and relapse-free survival. Results: Of the 506 breast tumors, 53 (10.5%) showed immunoreactivity for CK5/14. Basal cytokeratin expression showed up as two microscopically distinguishable subtypes, i.e., a uniformly positive type ("basal") and a partially positive type ("basoluminal") often displaying a checkerboard-type intratumoral heterogeneity. These subgroups could also be separated with a third basal cytokeratin (CK17, P < 0,0001). Both basal and basoluminal subtypes were hormone receptor negative and of high grade, but differed with respect to the Ki-67 labeling index (P = 0.0014), vimentin (P = 0.005), and c-kit (P = 0.02), which were more frequently expressed in basal than in basoluminal tumors. In contrast, the amplification of HER-2 was found almost exclusively in the basoluminal subgroup (P = 0.009). Compared with the basal tumors, basoluminal tumors associated with significantly shorter relapse-free survival (P = 0.01), which was not explained by their more frequent HER-2 amplification. Conclusions: We conclude that the intratumoral heterogeneity in basal cytokeratin expression can be used to define two distinct breast cancer subtypes, basal and basoluminal, with distinctive features related to proliferation activity, oncogene and biomarker status, and patient survival.
  •  
3.
  • Maurer, Matthew, et al. (författare)
  • 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma
  • 2009
  • Ingår i: Cancer Research. - 1538-7445. ; 69:15, s. 306-6299
  • Tidskriftsartikel (refereegranskat)abstract
    • Lesions of ERBB2, PTEN, and PIK3CA activate the phosphatidylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP(3)). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP(3) recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy