SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Labots Maaike) "

Sökning: WFRF:(Labots Maaike)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Syvänen, Stina, et al. (författare)
  • Altered GABAA Receptor Density and Unaltered Blood-Brain Barrier Transport in a Kainate Model of Epilepsy : An In Vivo Study Using 11C-Flumazenil and PET.
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:12, s. 1974-1983
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to investigate if flumazenil blood-brain barrier transport and binding to the benzodiazepine site on the γ-aminobutyric acid A (GABA(A)) receptor complex is altered in an experimental model of epilepsy and subsequently to study if changes in P-glycoprotein (P-gp)-mediated efflux of flumazenil at the blood-brain barrier may confound interpretation of (11)C-flumazenil PET in epilepsy. METHODS: The transport of flumazenil across the blood-brain barrier and the binding to the benzodiazepine site on the GABA(A) receptors in 5 different brain regions was studied and compared between controls and kainate-treated rats, a model of temporal lobe epilepsy, with and without tariquidar pretreatment. In total, 29 rats underwent 2 consecutive (11)C-flumazenil PET scans, each one lasting 30 min. The tracer was mixed with different amounts of isotopically unmodified flumazenil (4, 20, 100, or 400 μg) to cover a wide range of receptor occupancies during the scan. Before the second scan, the rats were pretreated with a 3 or 15 mg/kg dose of the P-gp inhibitor tariquidar. The second scan was then obtained according to the same protocol as the first scan. RESULTS: GABA(A) receptor density, B(max), was estimated as 44 ± 2 ng⋅mL(-1) in the hippocampus and as 33 ± 2 ng⋅mL(-1) in the cerebellum, with intermediate values in the occipital cortex, parietal cortex, and caudate putamen. B(max) was decreased by 12% in kainate-treated rats, compared with controls. The radiotracer equilibrium dissociation constant, K(D), was similar in both rat groups and all brain regions and was estimated as 5.9 ± 0.9 ng⋅mL(-1). There was no difference in flumazenil transport across the blood-brain barrier between control and kainate-treated rats, and the effect of tariquidar treatment was similar in both rat groups. Tariquidar treatment also decreased flumazenil transport out of the brain by 73%, increased the volume of distribution in the brain by 24%, and did not influence B(max) or K(D), compared with baseline(.) CONCLUSION: B(max) was decreased in kainate-treated rats, compared with controls, but no alteration in the blood-brain barrier transport of flumazenil was observed. P-gp inhibition by tariquidar treatment increased brain concentrations of flumazenil in both groups, but B(max) estimates were not influenced, suggesting that (11)C-flumazenil scanning is not confounded by alterations in P-gp function.
  •  
2.
  • Syvänen, Stina, et al. (författare)
  • [C-11]quinidine and [C-11]laniquidar PET imaging in a chronic rodent epilepsy model : Impact of epilepsy and drug-responsiveness
  • 2013
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:6, s. 764-775
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: To analyse the impact of both epilepsy and pharmacological modulation of P-glycoprotein on brain uptake and kinetics of positron emission tomography (PET) radiotracers [C-11]quinidine and [C-11]laniquidar.Methods: Metabolism and brain kinetics of both [C-11]quinidine and [C-11]laniquidar were assessed in naive rats, electrode-implanted control rats, and rats with spontaneous recurrent seizures. The latter group was further classified according to their response to the antiepileptic drug phenobarbital into "responders" and "non-responders". Additional experiments were performed following pre-treatment with the P-glycoprotein modulator tariquidar.Results: [C-11]quinidine was metabolized rapidly, whereas [C-11]laniquidar was more stable. Brain concentrations of both radiotracers remained at relatively low levels at baseline conditions. Tariquidar pre-treatment resulted in significant increases of [C-11]quinidine and [C-11]laniquidar brain concentrations. In the epileptic subgroup "non-responders", brain uptake of [C-11]quinidine in selected brain regions reached higher levels than in electrode-implanted control rats. However, the relative response to tariquidar did not differ between groups with full blockade of P-glycoprotein by 15 mg/kg of tariquidar. For [C-11]laniquidar differences between epileptic and control animals were only evident at baseline conditions but not after tariquidar pretreatment.Conclusions: We confirmed that both [C-11]quinidine and [C-11]laniquidar are P-glycoprotein substrates. At full P-gp blockade, tariquidar pre-treatment only demonstrated slight differences for [C-11]quinidine between drug-resistant and drug-sensitive animals.
  •  
3.
  • Verbeek, Joost, et al. (författare)
  • [11C]phenytoin revisited : synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats.
  • 2012
  • Ingår i: EJNMMI Research. - 2191-219X. ; 2:1, s. 36-
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: At present, several positron emission tomography (PET) tracers are in use for imaging Pglycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[11C]verapamil display low brain concentrations with a distribution volume of around 1. [11C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [11C]phenytoin and to characterize its properties as a P-gp tracer. METHODS: [11C]CO was used to synthesize [11C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [11C]phenytoin were studied in rats. Effects of P-gp function on [11C]phenytoin uptake were assessed using predosing with tariquidar. RESULTS: [11C]phenytoin was synthesized via [11C]CO in an overall decay-corrected yield of 22 +/- 4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [11C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [11C]phenytoin. CONCLUSIONS: Using [11C]CO, the radiosynthesis of [11C]phenytoin could be improved. [11C]phenytoin appeared to be a rather weak P-gp substrate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy