SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laflamme Marc) "

Sökning: WFRF:(Laflamme Marc)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beck, Susanne, et al. (författare)
  • Examining Open Innovation in Science (OIS): what Open Innovation can and cannot offer the science of science
  • 2023
  • Ingår i: Innovation: Organization & Management. - : Taylor & Francis (Routledge): SSH Titles. - 2204-0226 .- 1447-9338. ; 25:3, s. 221-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Scholars across disciplines increasingly hear calls for more open and collaborative approaches to scientific research. The concept of Open Innovation in Science (OIS) provides a framework that integrates dispersed research efforts aiming to understand the antecedents, contingencies, and consequences of applying open and collaborative research practices. While the OIS framework has already been taken up by science of science scholars, its conceptual underpinnings require further specification. In this essay, we critically examine the OIS concept and bring to light two key aspects: 1) how OIS builds upon Open Innovation (OI) research by adopting its attention to boundary-crossing knowledge flows and by adapting other concepts developed and researched in OI to the science context, as exemplified by two OIS cases in the area of research funding; 2) how OIS conceptualises knowledge flows across boundaries. While OI typically focuses on well-defined organisational boundaries, we argue that blurry and even invisible boundaries between communities of practice may more strongly constrain flows of knowledge related to openness and collaboration in science. Given the uptake of this concept, this essay brings needed clarity to the meaning of OIS, which has no particular normative orientation towards a close coupling between science and industry. We end by outlining the essay's contributions to OI and the science of science, as well as to science practitioners.
  •  
2.
  • Xiao, Shuhai, et al. (författare)
  • Towards an Ediacaran Time Scale : Problems, Protocols, and Prospects
  • 2016
  • Ingår i: Episodes. - : International Union of Geological Sciences. - 0705-3797 .- 2586-1298. ; 39:4, s. 540-555
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ediacaran Period follows the Cryogenian Period in the wake of a snowball Earth glaciation and precedes the Cambrian Period with its rising tide of animal radiation. It is also the longest among all stratigraphically defined geological periods, lasting 94 million years (635-541 Ma). Hence, a good Ediacaran time scale is essential, not only to elucidate geological time, but also to provide a temporal context for extreme climatic events and transformative evolutionary transitions. Ediacaran fossils are known from many sections and boreholes around the world, permitting ready age recognition and stratigraphic correlation of Ediacaran strata. However, the Ediacaran fossil record is colored by taphonomic biases that variously affect the preservation of the soft-bodied organisms that dominated Ediacaran marine ecosystems, and the Phanerozoic approach of defining stratigraphic boundaries using the first appearance datum (FAD) of widely distributed, rapidly evolving, easily recognizable, and readily preservable species would have limited success in the Ediacaran System. The subdivision of the Ediacaran System must therefore be founded on a holistic approach integrating biostratigraphic, chemostratigraphic, and geochronometric data for correlation. Series-level subdivision of the Ediacaran System is a challenging task, and alternative models subdividing the Ediacaran System into two or three series can be recognized. Resolving these alternatives critically depends on obtaining further data to constrain the age, duration, and global extent of the Shuram negative delta C-13 excursion, to calibrate and correlate Ediacaran acanthomorph biozones, and to determine the temporal relationship among the Shuram excursion, the Gaskiers glaciation, and Ediacaran acanthomorph biozones. Stage-level subdivisions at the bottom and top of the Ediacaran System, however, are realistic goals in the near future, and we propose that the subdivision of the Ediacaran System should initially aim at the second Ediacaran stage (SES) and the terminal Ediacaran stage (TES) where stratigraphic information is relatively rich and consensus for stratigraphic correlation is emerging. Potential stratigraphic markers for the definition of the SES include the post-glacial radiation of eukaryotes as represented by the first appearance of acanthomorph acritarchs, the termination of the cap carbonate series, or the end of the negative delta C-13 excursion (EN1 = Ediacaran negative excursion 1) associated with the cap carbonate. Terminal Ediacaran strata are well dated and host several taxa of skeletal and tubular fossils that postdate the Shuram negative delta C-13 excursion (or its probable equivalent, EN3 = Ediacaran negative excursion 3) where their stratigraphic relationship can be determined; these biostratigraphic markers may be used to define the TES in a Phanerozoic fashion. Additional Ediacaran stages between the SES and TES can be envisioned. Through collaborative efforts in the Ediacaran community, we hope that the first Precambrian stage will be established in the near future to facilitate a better understanding of the geological aftermath of snowball Earth, the redox history of global oceans, the early evolution of multicellular life, and the evolutionary fuse of the Cambrian explosion.
  •  
3.
  • 2017
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy