SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerquist M. K.) "

Sökning: WFRF:(Lagerquist M. K.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Corciulo, Carmen, et al. (författare)
  • Physiological levels of estradiol limit murine osteoarthritis progression
  • 2022
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 255:2, s. 39-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17 beta-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.
  •  
3.
  • Corciulo, Carmen, et al. (författare)
  • Pulsed administration for physiological estrogen replacement in mice
  • 2021
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 2046-1402 .- 1759-796X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important regulators of body physiology and have major effects on metabolism, bone, the immune- and central nervous systems. The specific mechanisms underlying the effects of estrogens on various cells, tissues and organs are unclear and mouse models constitute a powerful experimental tool to define the physiological and pathological properties of estrogens. Menopause can be mimicked in animal models by surgical removal of the ovaries and replacement therapy with 17β-estradiol in ovariectomized (OVX) mice is a common technique used to determine specific effects of the hormone. However, these studies are complicated by the non-monotonic dose-response of estradiol, when given as therapy. Increased knowledge of how to distribute estradiol in terms of solvent, dose, and administration frequency, is required in order to accurately mimic physiological conditions in studies where estradiol treatment is performed. In this study, mice were OVX and treated with physiological doses of 17β-estradiol-3-benzoate (E2) dissolved in miglyol or PBS. Subcutaneous injections were performed every 4 days to resemble the estrus cycle in mice. Results show that OVX induces an osteoporotic phenotype, fat accumulation and impairment of the locomotor ability, as expected. Pulsed administration of physiological doses of E2 dissolved in miglyol rescues the phenotypes induced by OVX. However, when E2 is dissolved in PBS the effects are less pronounced, possibly due to rapid wash out of the steroid.
  •  
4.
  • Farman, H. H., et al. (författare)
  • Female mice lacking estrogen receptor-α in hypothalamic proopiomelanocortin (POMC) neurons display enhanced estrogenic response on cortical bone mass
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)α.CentralERα exertsaninhibitoryroleonbonemass.ERα ishighlyexpressedinthearcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα -/- ). Female POMC-ERα -/- and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα -/- mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERaα-mediated effects in bone determines cortical bone mass in female mice.
  •  
5.
  •  
6.
  • Scheffler, Julia M., et al. (författare)
  • ER alpha Signaling in a Subset of CXCL12-Abundant Reticular Cells Regulates Trabecular Bone in Mice
  • 2022
  • Ingår i: JBMR Plus. - : Wiley. - 2473-4039. ; 6:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockout mouse model where estrogen receptor alpha (ER alpha) is deleted in CCL19-expressing stromal cells (Ccl19-Cre ER alpha(fl/fl) mice) was generated and bone densitometry was performed to analyze the importance of stromal cell-specific ER alpha signaling on the skeleton. Results showed that female Ccl19-Cre ER alpha(fl/fl) mice display reduced total bone mineral density and detailed X-ray analyses revealed that ER alpha expression in CCL19-expressing stromal cells is important for trabecular but not cortical bone homeostasis. Further analysis showed that the trabecular bone loss is caused by increased osteoclastogenesis. Additionally, the bone formation rate was reduced; however, the expression of osteoprogenitor genes was not altered. Analysis of the bone marrow stromal cell compartment revealed a deletion of ER alpha in a subgroup of CXCL12-abundant reticular (CAR) cells resulting in increased secretion of the pro-osteoclastogenic chemokine CXCL12. In conclusion, this study reveals the importance of ER alpha signaling in CAR cells for bone health. (c) 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
  •  
7.
  • Börjesson, Anna E, et al. (författare)
  • SERMs have substance-specific effects on bone, and these effects are mediated via ER alpha AF-1 in female mice
  • 2016
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 310:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)alpha, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ER alpha AF-1 for the estradiol (E-2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ER alpha AF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ER alpha AF-1 (ER alpha AF-1(0)) with E-2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ER alpha AF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ER alpha AF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.
  •  
8.
  • Börjesson, Anna E, et al. (författare)
  • The role of activation functions 1 and 2 of estrogen receptor-alpha for the effects of estradiol and selective estrogen receptor modulators in male mice
  • 2013
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 28:5, s. 1117-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ER had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ER for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERAF-1 (ERAF-10), ERAF-2 (ERAF-20), or the total ER (ER/) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ER/ or ERAF-20 mirx ERAF-10 mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERAF-1 for the effects of SERMs, we treated orx WT and ERAF-10 mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERAF-10 mice. In conclusion, ERAF-2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERAF-1 is tissue-specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERAF-1. Our findings might contribute to the development of bone-specific SERMs in males. (c) 2013 American Society for Bone and Mineral Research.
  •  
9.
  • Corciulo, Carmen, et al. (författare)
  • Physiological levels of estradiol limit murine osteoarthritis progression
  • 2022
  • Ingår i: The Journal of endocrinology. - 0022-0795 .- 1479-6805. ; 255:2, s. 39-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.
  •  
10.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs
  • 2022
  • Ingår i: Journal of Endocrinology. - 0022-0795. ; 253:2, s. 75-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To dete rmine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451 A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradi ol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mER α-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were abse nt in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in th e skeleton are mERα- dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrati ng mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mER α signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manne r. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy