SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagrange Anne Marie) "

Sökning: WFRF:(Lagrange Anne Marie)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boccaletti, Anthony, et al. (författare)
  • Fast-moving features in the debris disk around AU Microscopii
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7572, s. 230-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
  •  
2.
  • Calissendorff, Per, 1989-, et al. (författare)
  • Updated orbital monitoring and dynamical masses for nearby M-dwarf binaries
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Young M-type binaries are particularly useful for precise isochronal dating by taking advantage of their extended pre-main sequence evolution. Orbital monitoring of these low-mass objects becomes essential in constraining their fundamental properties, as dynamical masses can be extracted from their Keplerian motion. Here, we present the combined efforts of the AstraLux Large Multiplicity Survey, together with a filler sub-programme from the SpHere INfrared Exoplanet (SHINE) project and previously unpublished data from the FastCam lucky imaging camera at the Nordical Optical Telescope (NOT) and the NaCo instrument at the Very Large Telescope (VLT). Building on previous work, we use archival and new astrometric data to constrain orbital parameters for 20 M-type binaries. We identify that eight of the binaries have strong Bayesian probabilities and belong to known young moving groups (YMGs). We provide a first attempt at constraining orbital parameters for 14 of the binaries in our sample, with the remaining six having previously fitted orbits for which we provide additional astrometric data and updated Gaia parallaxes. The substantial orbital information built up here for four of the binaries allows for direct comparison between individual dynamical masses and theoretical masses from stellar evolutionary model isochrones, with an additional three binary systems with tentative individual dynamical mass estimates likely to be improved in the near future. We attained an overall agreement between the dynamical masses and the theoretical masses from the isochrones based on the assumed YMG age of the respective binary pair. The two systems with the best orbital constrains for which we obtained individual dynamical masses, J0728 and J2317, display higher dynamical masses than predicted by evolutionary models.
  •  
3.
  • Hinkley, Sasha, et al. (författare)
  • The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1039
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
  •  
4.
  • Skaf, Nour, et al. (författare)
  • The β Pictoris system : Setting constraints on the planet and the disk structures at mid-IR wavelengths with NEAR
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. β Pictoris is a young nearby system hosting a well-resolved edge-on debris disk, along with at least two exoplanets. It offers key opportunities for carrying out detailed studies of the evolution of young planetary systems and their shaping soon after the end of the planetary formation phase. Aims. We analyzed high-contrast coronagraphic images of this system, obtained in the mid-infrared, taking advantage of the NEAR experiment using the VLT/VISIR instrument, which provides access to adaptive optics, as well as phase coronagraphy. The goal of our analysis is to investigate both the detection of the planet β Pictoris b and of the disk features at mid-IR wavelengths. In addition, by combining several epochs of observation, we expect to constrain the position of the known clumps and improve our knowledge on the dynamics of the disk. Methods. We observed the β Pictoris system over two nights in December 2019 in the 10- 12.5 μm coronagraphic filter. To evaluate the planet b flux contribution, we extracted the photometry at the expected position of the planet and compared it to the flux published in the literature. In addition, we used previous data from T-ReCS and VISIR in the mid-IR, updating the star's distance, to study the evolution of the position of the southwest clump that was initially observed in the planetary disk back in 2003. Results. While we did not detect the planet b, we were able to put constraints on the presence of circumplanetary material, ruling out the equivalent of a Saturn-like planetary ring around the planet. The disk presents several noticeable structures, including the known southwest clump. Using a 16-yr baseline, sampled with five epochs of observations, we were able to examine the evolution of the clump. We found that the clump orbits in a Keplerian motion with a semi-major axis of 56.1-0.3+0.4 au. In addition to the known clump, the images clearly show the presence of a second clump on the northeast side of the disk as well as possibly fainter and closer structures that are yet to be confirmed. Furthermore, we found correlations between the CO clumps detected with ALMA and the northeastern and southwestern clumps in the mid-IR images. Conclusions. If the circumplanetary material were located at the Roche radius, the maximum amount of dust determined from the flux upper limit around β Pictoris b would correspond to the mass of an asteroid of 5 km in diameter. Finally, the Keplerian motion of the southwestern clump is possibly indicative of a yet-to-be detected planet or signals the presence of a vortex.
  •  
5.
  •  
6.
  •  
7.
  • Xie, Chen, et al. (författare)
  • Reference-star differential imaging on SPHERE/IRDIS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Reference-star differential imaging (RDI) is a promising technique in high-contrast imaging that is thought to be more sensitive to exoplanets and disks than angular differential imaging (ADI) at short angular separations (i.e., <0.3’). However, it is unknown whether the performance of RDI on ground-based instruments can be improved by using all the archival data to optimize the subtraction of stellar contributions.Aims. We characterize the performance of RDI on SPHERE/IRDIS data in direct imaging of exoplanets and disks.Methods. We made use of all the archival data in H23 obtained by SPHERE/IRDIS in the past 5 yr to build a master reference library and perform RDI. To avoid biases caused by limited test targets under specific conditions, 32 targets were selected to obtain the average performances of RDI under different conditions, and we compared the performances with those of ADI.Results. In the point-source detection, RDI can outperform ADI at small angular separations (<0.4’) if the observing conditions are around the median conditions of our master reference library. On average, RDI has a gain of ~0.8 mag over ADI at 0.15’ separation for observations under median conditions. We demonstrate that including more reference targets in the master reference library can indeed help to improve the performance of RDI. In disk imaging, RDI can reveal more disk features and provide a more robust recovery of the disk morphology. We resolve 33 disks in total intensity (19 planet-forming disks and 14 debris disks), and 4 of them can only be detected with RDI. Two disks are resolved in scattered light for the first time. Three disks are detected in total intensity for the first time.Conclusions. RDI is a promising imaging technique for ground-based instruments such as SPHERE. The master reference library we built in this work can be easily implemented into legacy or future SPHERE surveys to perform RDI, achieving better performance than that of ADI. To obtain optimal RDI gains over ADI, we recommend future observations be carried out under seeing conditions of 0.6’–0.8’.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy