SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lahl Jan) "

Sökning: WFRF:(Lahl Jan)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnold, Cord L., et al. (författare)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • Ingår i: 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. - 9781728104690 ; Part F140-CLEO_Europe 2019
  • Konferensbidrag (refereegranskat)abstract
    • Attosecond pulses in the extreme ultraviolet (XUV) spectral range are today routinely generated via high-order harmonic generation (HHG), when intense ultrashort laser pulses are focused into a gaseous generation medium. The effect is most easily understood in a semi-classical picture [1]. An electron can tunnel ionize from the distorted atomic potential, pick up kinetic energy in the laser field, potentially return to its parent ion and recombine. The excess energy is emitted as XUV photon. The process repeats for every half-cycle of the driving field, resulting in a train of attosecond pulses and in the frequency domain in the well-known, odd-order comb of harmonics. Two main families of electron trajectories leading to the same photon energy can be distinguished into 'short' and 'long', according to their time of travel in the continuum. Due to the complicated nature of the HHG process, attosecond pulses usually cannot be separated into their temporal and spatial profiles, but instead have strong chromatic aberration and are spatio-temporally coupled [2-4].
  •  
2.
  • Wikmark, Hampus, et al. (författare)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 116:11, s. 4779-4787
  • Tidskriftsartikel (refereegranskat)abstract
    • The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring highquality focusing while retaining the broadband/ultrashort characteristics of the radiation.
  •  
3.
  • Allum, Felix, et al. (författare)
  • Coulomb explosion imaging of CH3I and CH2CII photodissociation dynamics
  • 2018
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 149:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The photodissociation dynamics of CH3I and CH2CII at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815nmprobe pulse. Fragment ion momenta over a widem/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.
  •  
4.
  • Brasse, Felix, et al. (författare)
  • Time-resolved inner-shell photoelectron spectroscopy : From a bound molecule to an isolated atom
  • 2018
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 97:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I) is investigated by ionization above the iodine 4d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.
  •  
5.
  • Burt, Michael, et al. (författare)
  • Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics
  • 2017
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 96:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics following laser-induced molecular photodissociation of gas-phase CH2BrI at 271.6 nm were investigated by time-resolved Coulomb-explosion imaging using intense near-IR femtosecond laser pulses. The observed delay-dependent photofragment momenta reveal that CH2BrI undergoes C-I cleavage, depositing 65.6% of the available energy into internal product states, and that absorption of a second UV photon breaks the C-Br bond of C(H)2Br. Simulations confirm that this mechanism is consistent with previous data recorded at 248 nm, demonstrating the sensitivity of Coulomb-explosion imaging as a real-time probe of chemical dynamics.
  •  
6.
  • Cheng, Yu Chen, et al. (författare)
  • Imaging multiphoton ionization dynamics of CH3I at a high repetition rate XUV free-electron laser
  • 2021
  • Ingår i: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 54:1
  • Tidskriftsartikel (refereegranskat)abstract
    • XUV multiphoton ionization of molecules is commonly used in free-electron laser experiments to study charge transfer dynamics. However, molecular dissociation and electron dynamics, such as multiple photon absorption, Auger decay, and charge transfer, often happen on competing time scales, and the contributions of individual processes can be difficult to unravel. We experimentally investigate the Coulomb explosion dynamics of methyl iodide upon core-hole ionization of the shallow inner-shell of iodine (4d) and classically simulate the fragmentation by phenomenologically introducing ionization dynamics and charge transfer. Under our experimental conditions with medium fluence and relatively long XUV pulses (similar to 75 fs), we find that fast Auger decay prior to charge transfer significantly contributes to the charging mechanism, leading to a yield enhancement of higher carbon charge states upon molecular dissociation. Furthermore, we argue for the existence of another charging mechanism for the weak fragmentation channels leading to triply charged carbon atoms. This study shows that classical simulations can be a useful tool to guide the quantum mechanical description of the femtosecond dynamics upon multiphoton absorption in molecular systems.
  •  
7.
  • Coudert-Alteirac, Hélène, et al. (författare)
  • Micro-focusing of broadband high-order harmonic radiation by a double toroidal mirror
  • 2017
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an optical system based on two toroidal mirrors in aWolter configuration to focus broadband extreme ultraviolet (XUV) radiation. Optimization of the focusing optics alignment is carried out with the aid of an XUV wavefront sensor. Back-propagation of the optimized wavefront to the focus yields a focal spot of 3.6 × 4.0 μm2 full width at half maximum, which is consistent with ray-tracing simulations that predict a minimum size of 3.0 × 3.2 μm2. This work is important for optimizing the intensity of focused high-order harmonics in order to reach the nonlinear interaction regime.
  •  
8.
  • Dacasa, Hugo, et al. (författare)
  • Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics
  • 2019
  • Ingår i: Optics Express. - 1094-4087. ; 27:3, s. 2656-2670
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to 휆/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).
  •  
9.
  • Kockert, Hansjochen, et al. (författare)
  • UV-induced dissociation of CH2BrI probed by intense femtosecond XUV pulses
  • 2022
  • Ingår i: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 55:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultraviolet (UV)-induced dissociation and photofragmentation of gas-phase CH2BrI molecules induced by intense femtosecond extreme ultraviolet (XUV) pulses at three different photon energies are studied by multi-mass ion imaging. Using a UV-pump-XUV-probe scheme, charge transfer between highly charged iodine ions and neutral CH2Br radicals produced by C-I bond cleavage is investigated. In earlier charge-transfer studies, the center of mass of the molecules was located along the axis of the bond cleaved by the pump pulse. In the present case of CH2BrI, this is not the case, thus inducing a rotation of the fragment. We discuss the influence of the rotation on the charge transfer process using a classical over-the-barrier model. Our modeling suggests that, despite the fact that the dissociation is slower due to the rotational excitation, the critical interatomic distance for charge transfer is reached faster. Furthermore, we suggest that charge transfer during molecular fragmentation may be modulated in a complex way.
  •  
10.
  • Lahl, Jan (författare)
  • Investigation of Ultrafast Molecular Dynamics via Covariance Mapping : A Tool for Intense XUV Light Sources
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The study of molecular dynamics involves observations of the motion of nuclei and electrons. While nuclear motion is usually on the picosecond or femtosecond timescale, attosecond precision is necessary to directly observe the motion of electrons. Ultrashort laser pulses have become established as a viable tool for probing femtosecond dynamics by irradiating the target for only extremely short times. This allows snapshots of the motion to be obtained. However, extreme ultraviolet (XUV) or soft X-ray wavelengths are required to generate attosecond pulses. Two light sources that produce ultrashort XUV pulses were used during the work presented in this thesis: the free electron laser in Hamburg (FLASH) and the high-order harmonic generation-based light source at the High-Intensity XUV Beamline in Lund.This thesis describes the application of covariance mapping and pump-probe spectroscopy as tools to investigate molecular dynamics at these XUV light sources. A covariance mapping scheme was implemented in conjunction with a double-sided velocity map imaging spectrometer at the High-Intensity XUV Beamline. Its capabilities were demonstrated in a proof-of-principle experiment on molecular nitrogen. The scheme was subsequently applied to more complex molecules, and results from photoion-photoion covariance mapping of adamantane (C10H16) are presented. The photodissociation behavior of halomethane molecules was investigated with infrared - ultraviolet and ultraviolet - soft X-ray pump-probe schemes during several measurement campaigns at FLASH. While these time-resolved experiments probed dynamics mainly on the picosecond timescale, efforts were made at the High-Intensity XUV Beamline towards attosecond precision XUV-XUV pump-probe experiments. After demonstrating the ability to induce two-photon processes with XUV light, the XUV wavefronts were studied over several experimental campaigns. These campaigns led to a significant reduction of aberrations in the XUV wavefronts. The size and quality of the XUV focal spot as well as the XUV generation yield were improved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy