SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lahl Katharina) "

Sökning: WFRF:(Lahl Katharina)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arabpour, Mohammad, et al. (författare)
  • ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection
  • 2022
  • Ingår i: Mucosal Immunology. - : Elsevier BV. - 1933-0219. ; 15:4, s. 745-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Migratory dendritic cells expressing CD103 are the targets for mucosal vaccines. These belong to either of two lineage-restricted subsets, cDC1 or cDC2 cells, which have been linked to priming of functionally distinct CD4 T cells. However, recent studies have identified plasticity in cDC2 cells with overlapping functions with cDC1 cells, while the converse has not been reported. We genetically engineered a vaccine adjuvant platform that targeted the cholera toxin A1 (CTA1) ADP-ribosylating enzyme to CD103(+) cDC1 and cDC2 cells using a single-chain antibody (scFv) to CD103. Unexpectedly, intranasal immunization with the CTA1-svFcCD103 adjuvant modified cDC1 cells to effectively prime Th17 cells, a function previously limited to cDC2 cells. In fact, cDC2 cells were dispensible, while cDC1 cells, lacking in Batf3-/- mice, were critical. Following intranasal immunizations isolated cDC1 cells from mLN exclusively promoted Rorgt(+) T cells and IL-17, IL-21, and IL-22 production. Strong CD8 T cell responses through antigen cross presentation by cDC1 cells were also observed. Single-cell RNAseq analysis revealed upregulation of Th17-promoting gene signatures in sorted cDC1 cells. Gene expression in isolated cDC2 cells was largely unaffected. Our finding represents a major shift of paradigm as we have documented functional plasticity in cDC1 cells.
  •  
2.
  • Dahlgren, Madelene W., et al. (författare)
  • Type I Interferons Promote Germinal Centers Through B Cell Intrinsic Signaling and Dendritic Cell Dependent Th1 and Tfh Cell Lineages
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Type I interferons (IFNs) are essential for antiviral immunity, appear to represent a key component of mRNA vaccine-adjuvanticity, and correlate with severity of systemic autoimmune disease. Relevant to all, type I IFNs can enhance germinal center (GC) B cell responses but underlying signaling pathways are incompletely understood. Here, we demonstrate that a succinct type I IFN response promotes GC formation and associated IgG subclass distribution primarily through signaling in cDCs and B cells. Type I IFN signaling in cDCs, distinct from cDC1, stimulates development of separable Tfh and Th1 cell subsets. However, Th cell-derived IFN-γ induces T-bet expression and IgG2c isotype switching in B cells prior to this bifurcation and has no evident effects once GCs and bona fide Tfh cells developed. This pathway acts in synergy with early B cell-intrinsic type I IFN signaling, which reinforces T-bet expression in B cells and leads to a selective amplification of the IgG2c+ GC B cell response. Despite the strong Th1 polarizing effect of type I IFNs, the Tfh cell subset develops into IL-4 producing cells that control the overall magnitude of the GCs and promote generation of IgG1+ GC B cells. Thus, type I IFNs act on B cells and cDCs to drive GC formation and to coordinate IgG subclass distribution through divergent Th1 and Tfh cell-dependent pathways.
  •  
3.
  • Gribonika, Inta, et al. (författare)
  • Migratory CD103+CD11b+ cDC2 cells in Peyer's patches are critical for gut IgA responses following oral immunization.
  • Ingår i: Mucosal Immunology. - 1933-0219.
  • Tidskriftsartikel (refereegranskat)abstract
    • Induction and regulation of specific intestinal IgA responses critically depend on dendritic cell subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of CD103 - cDC2s and LysoDCs in the subepithelial dome and of CD103 + cDC2s that expressed CD101 in the T cell zones (TZ), while oral OVA tolerization was instead associated with larger quantities of TZ cDC1s and pTregs. Decreased IgA responses were observed after CT adjuvanted immunization in huCD207DTA mice lacking CD103 + cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3 -/- mice. Using Ovalbumin (OVA) TCR transgenic CD4 T cell adoptive transfer models, we found that co-transferred endogenous WT CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of IL-10. CT could overcome this blocking effect, apparently through a modulating effect on peripherally induced Tregs (pTreg) while promoting an expansion of follicular helper T cells (Tfh). The data support a model where cDC1-induced pTreg normally supress PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting Tfh responses through induction of CD103 + cDC2s.
  •  
4.
  • Hamza, Kedir Hussen, et al. (författare)
  • Minor alterations in the intestinal microbiota composition upon Rotavirus infection do not affect susceptibility to DSS colitis
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral triggers at the intestinal mucosa can have multiple global effects on intestinal integrity, causing elevated intestinal barrier strength and relative protection from subsequent inflammatory bowel disease (IBD) induction in various models. As viruses can interfere with the intestinal immune system both directly and indirectly through commensal bacteria, cause-effect relationships are difficult to define. Due to the complexity of putatively causative factors, our understanding of such virus-mediated protection is currently very limited. We here set out to better understand the impact that adult enteric infection with rotavirus (RV) might have on the composition of the intestinal microbiome and on the severity of IBD. We found that RV infection neither induced significant long-lasting microbiota community changes in the small or large intestine nor affected the severity of subsequent dextran sulfate sodium-induced colitis. Hence, adult murine RV infection does not exert lasting effects on intestinal homeostasis.
  •  
5.
  • Jørgensen, Astrid Sissel, et al. (författare)
  • The C-terminal peptide of CCL21 drastically augments CCL21 activity through the dendritic cell lymph node homing receptor CCR7 by interaction with the receptor N-terminus
  • 2021
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 78:21-22, s. 6963-6978
  • Tidskriftsartikel (refereegranskat)abstract
    • The endogenous chemokines CCL19 and CCL21 signal via their common receptor CCR7. CCL21 is the main lymph node homing chemokine, but a weak chemo-attractant compared to CCL19. Here we show that the 41-amino acid positively charged peptide, released through C-terminal cleavage of CCL21, C21TP, boosts the immune cell recruiting activity of CCL21 by up to 25-fold and the signaling activity via CCR7 by ~ 100-fold. Such boosting is unprecedented. Despite the presence of multiple basic glycosaminoglycan (GAG) binding motifs, C21TP boosting of CCL21 signaling does not involve interference with GAG mediated cell-surface retention. Instead, boosting is directly dependent on O-glycosylations in the CCR7 N-terminus. As dictated by the two-step binding model, the initial chemokine binding involves interaction of the chemokine fold with the receptor N-terminus, followed by insertion of the chemokine N-terminus deep into the receptor binding pocket. Our data suggest that apart from a role in initial chemokine binding, the receptor N-terminus also partakes in a gating mechanism, which could give rise to a reduced ligand activity, presumably through affecting the ligand positioning. Based on experiments that support a direct interaction of C21TP with the glycosylated CCR7 N-terminus, we propose that electrostatic interactions between the positively charged peptide and sialylated O-glycans in CCR7 N-terminus may create a more accessible version of the receptor and thus guide chemokine docking to generate a more favorable chemokine-receptor interaction, giving rise to the peptide boosting effect.
  •  
6.
  • López, Agnès Garcias, et al. (författare)
  • Migration of murine intestinal dendritic cell subsets upon intrinsic and extrinsic TLR3 stimulation
  • 2020
  • Ingår i: European Journal of Immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 50:10, s. 1525-1536
  • Tidskriftsartikel (refereegranskat)abstract
    • Initiation of adaptive immunity to particulate antigens in lymph nodes largely depends on their presentation by migratory dendritic cells (DCs). DC subsets differ in their capacity to induce specific types of immunity, allowing subset-specific DC-targeting to influence vaccination and therapy outcomes. Faithful drug design, however, requires exact understanding of subset-specific versus global activation mechanisms. cDC1, the subset of DCs that excel in supporting immunity towards viruses, intracellular bacteria and tumors, express uniquely high levels of the pattern recognition receptor TLR3. Using various murine genetic models, we show here that both, the cDC1 and cDC2 subsets of cDCs are activated and migrate equally well in response to TLR3 stimulation in a cell extrinsic and TNFα dependent manner, but that cDC1 show a unique requirement for type I interferon signaling. Our findings reveal common and differing pathways regulating DC subset migration, offering important insights for the design of DC-based vaccination and therapy approaches. This article is protected by copyright. All rights reserved.
  •  
7.
  • Muleta, Konjit Getachew, et al. (författare)
  • Rotavirus-Induced Expansion of Antigen-Specific CD8 T Cells Does Not Require Signaling via TLR3, MyD88 or the Type I Interferon Receptor
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Rotavirus (RV) infection induces strong adaptive immunity. While protection from reinfection requires humoral immunity, initial clearance of infection depends on cytotoxic CD8 T cells. Type I classical dendritic cells (cDC1) excel at CD8 T cell induction through cross-presentation and are essential for optimal cytotoxicity towards RV. Upon sensing of infection-induced innate immune signals through pattern recognition receptors (PRRs), cumulating in autocrine type I interferon (IFN) signaling, cDC1 mature and migrate to the draining lymph nodes (LNs), where they prime adaptive immune cells. To analyze which PRR pathways lead to robust cytotoxicity in the context of RV infection, we measured RV-specific CD8 T cell priming in mice deficient for Toll-like receptor 3 (TLR3), recognizing double-stranded RNA, or for MyD88, the adapter for all other TLRs and IL-1 family cytokines. Individual TLR3- and MyD88-mediated signaling was not required for the priming of CD8 T cell responses to RV and neither deficiency impacted on RV clearance. Surprisingly, the accumulation of RV-specific CD8 T cells was also not altered in the absence of type I IFN signaling, while their ability to produce IFNγ and granzyme were blunted. Together, this suggests a substantial level of redundancy in the sensing of RV infection and the translation of signals into protective CD8 T cell immunity.
  •  
8.
  • Nakawesi, Joy, et al. (författare)
  • Rotavirus infection causes mesenteric lymph node hypertrophy independently of type I interferon or TNF-α in mice
  • 2021
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 51:5, s. 1143-1152
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoid organ hypertrophy is a characteristic feature of acute infection and is considered to enable efficient induction of adaptive immune responses. Accordingly, oral infection with rotavirus induced a robust increase in cellularity in the mesenteric LNs, whose kinetics correlated with viral load and was caused by halted lymphocyte egress and increased recruitment of cells without altered cellular proliferation. Lymphocyte sequestration and mesenteric LN hypertrophy were independent of type 1 IFN receptor signaling or the continuous presence of TNF-α. Our results support previous findings that adaptive immunity toward rotavirus is initiated primarily in the mesenteric LNs and show that type I IFN or TNF-α are not required to coordinate the events involved in the LN response.
  •  
9.
  • Niedzielska, Magdalena, et al. (författare)
  • Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production.
  • 2015
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 195:4, s. 1753-1762
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-β, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-β and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-β expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-β production by these cells.
  •  
10.
  • Probst, Hans Christian, et al. (författare)
  • Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues
  • 2023
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 53:11
  • Tidskriftsartikel (refereegranskat)abstract
    • This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy