SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laitinen Tomi) "

Sökning: WFRF:(Laitinen Tomi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Juonala, Markus, et al. (författare)
  • Geographic Origin as a Determinant of Carotid Artery Intima-Media Thickness and Brachial Artery Flow-Mediated Dilation. The Cardiovascular Risk in Young Finns Study.
  • 2005
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 25:2, s. 392-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective - People living in eastern Finland have approximate to 40% higher coronary heart disease mortality rates than western Finns. Whether this is because of genetic or environmental factors is unknown. We examined the effect of geographic family origin on subclinical atherosclerosis among young Finns. Methods and Results - As part of a longitudinal follow-up study, we measured carotid intima-media thickness (IMT) in 2264 and brachial flow-mediated dilation (FMD) in 2109 white adults, aged 24 to 39 years. Subjects from eastern Finland had greater IMT and lower FMD compared with western subjects. These differences accentuated when the subjects' family origin ( grandparents' birthplace) was taken into account and remained significant after adjusting for several environmental factors. Among subjects with all grandparents born in eastern or western Finland, IMTs were ( mean +/- SEM) 0.592 +/- 0.003 versus 0.565 +/- 0.005 mm ( P < 0.0001), respectively. The corresponding FMD values were 7.61 +/- 0.15% versus 8.75 +/- 0.26%; P < 0.01. The number of grandparents born in eastern Finland was directly related to IMT ( P < 0.0001) and inversely to FMD ( P < 0.05). Conclusions - Young adults originating from eastern Finland have greater carotid IMT and lower brachial FMD than western Finns. Consistent with a hereditable component predisposing to or protecting from atherosclerosis, these differences accentuated when subjects' family origin was taken into account.
  •  
3.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
4.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy