SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laliberte Frederic) "

Sökning: WFRF:(Laliberte Frederic)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cohen, Judah, et al. (författare)
  • ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER - A US CLIVAR White Paper
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The Arctic has warmed more than twice as fast as the global average since the mid 20th century, a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system have coincided with a period of ostensibly more frequent events of extreme weather across the Northern Hemisphere (NH) mid-latitudes, including extreme heat and rainfall events and recent severe winters. Though winter temperatures have generally warmed since 1960 over mid-to-high latitudes, the acceleration in the rate of warming at high-latitudes, relative to the rest of the NH, started approximately in 1990. Trends since 1990 show cooling over the NH continents, especially in Northern Eurasia. The possible link between Arctic change and mid-latitude climate and weather has spurred a rush of new observational and modeling studies. A number of workshops held during 2013-2014 have helped frame the problem and have called for continuing and enhancing efforts for improving our understanding of Arctic-mid-latitude linkages and its attribution to the occurrence of extreme climate and weather events. Although these workshops have outlined some of the major challenges and provided broad recommendations, further efforts are needed to synthesize the diversified research results to identify where community consensus and gaps exist. Building upon findings and recommendations of the previous workshops, the US CLIVAR Working Group on Arctic Change and Possible Influence on Mid-latitude Climate and Weather convened an international workshop at Georgetown University in Washington, DC, on February 1-3, 2017. Experts in the fields of atmosphere, ocean, and cryosphere sciences assembled to assess the rapidly evolving state of understanding, identify consensus on knowledge and gaps in research, and develop specific actions to accelerate progress within the research community. With more than 100 participants, the workshop was the largest and most comprehensive gathering of climate scientists to address the topic to date. In this white paper, we synthesize and discuss outcomes from this workshop and activities involving many of the working group members.
  •  
2.
  • Döös, Kristofer, et al. (författare)
  • The Coupled Ocean-Atmosphere Hydrothermohaline Circulation
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:2, s. 631-647
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermohaline circulation of the ocean is compared to the hydrothermal circulation of the atmosphere. The oceanic thermohaline circulation is expressed in potential temperature-absolute salinity space and comprises a tropical cell, a conveyor belt cell, and a polar cell, whereas the atmospheric hydrothermal circulation is expressed in potential temperature-specific humidity space and unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. The oceanic thermohaline streamfunction makes it possible to analyze and quantify the entire World Ocean conversion rate between cold-warm and fresh-saline waters in one single representation. Its atmospheric analog, the hydrothermal streamfunction, instead captures the conversion rate between cold-warm and dry-humid air in one single representation. It is shown that the ocean thermohaline and the atmospheric hydrothermal cells are connected by the exchange of heat and freshwater through the sea surface. The two circulations are compared on the same diagramby scaling the axes such that the latent heat energy required to move an air parcel on the moisture axis is equivalent to that needed to move a water parcel on the salinity axis. Such a comparison leads the authors to propose that the Clausius-Clapeyron relationship guides both the moist branch of the atmospheric hydrothermal circulation and the warming branches of the tropical and conveyor belt cells of the oceanic thermohaline circulation.
  •  
3.
  • Kjellsson, Joakim, 1986-, et al. (författare)
  • The Atmospheric General Circulation in Thermodynamical Coordinates
  • 2014
  • Ingår i: Journal of the Atmospheric Sciences. - 0022-4928 .- 1520-0469. ; 71:3, s. 916-928
  • Tidskriftsartikel (refereegranskat)abstract
    • The zonal and meridional components of the atmospheric general circulation are used to define a global thermodynamic stream function in dry static energy versus latent heat coordinates. Diabatic motions in the tropical circulations and fluxes driven by midlatitude eddies are found to form a single, global thermodynamic cycle. Calculations based on the ERA-Interim reanalysis dataset indicate that the cycle has a peak transport of 428 Sv (Sv = 109 kg s−1). The thermodynamic cycle encapsulates a globally interconnected heat and water cycle comprising ascent of moist air where latent heat is converted into dry static energy, radiative cooling where dry air loses dry static energy, and a moistening branch where air is warmed and moistened. It approximately follows a tropical moist adiabat and is bounded by the Clausius-Clapeyron relationship for near-surface air. The variability of the atmospheric general circulation is related to ENSO events using reanalysis data from recent years (1979-2009) and historical simulations from the EC-Earth coupled climate model (1850-2005). The thermodynamic cycle in both EC-Earth and ERA-Interim widens and weakens with positive ENSO phases and narrows and strengthens during negative ENSO phases with a high correlation coefficient. Weakening in amplitude suggests a reduction in moist convection in the tropics, while widening suggests an increase in mean tropical near-surface moist static energy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy