SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lalueza Fox C.) "

Sökning: WFRF:(Lalueza Fox C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Olalde, I., et al. (författare)
  • The Beaker phenomenon and the genomic transformation of northwest Europe
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555:7695, s. 190-196
  • Tidskriftsartikel (refereegranskat)abstract
    • From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.
  •  
2.
  • Gopalakrishnan, Shyam, et al. (författare)
  • The population genomic legacy of the second plague pandemic
  • 2022
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 32:21, s. 4743-4751.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
  •  
3.
  • Allentoft, Morten E., et al. (författare)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy