SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lambert Jörg) "

Sökning: WFRF:(Lambert Jörg)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keller, Magdalena, et al. (författare)
  • Inhibiting the glycerophosphodiesterase EDI3 in ER-HER2+breast cancer cells resistant to HER2-targeted therapy reduces viability and tumour growth
  • 2023
  • Ingår i: Journal of Experimental & Clinical Cancer Research. - : BioMed Central (BMC). - 1756-9966. ; 42
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored.Methods: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo.Results: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3 beta, and transcription factors, including HIF1 alpha, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo.Conclusions: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.
  •  
2.
  • Amare, Azmeraw, et al. (författare)
  • Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder.
  • 2023
  • Ingår i: Research square. - : Research Square Platform LLC.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
  •  
3.
  • Amare, Azmeraw T, et al. (författare)
  • Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder.
  • 2023
  • Ingår i: Molecular psychiatry. - 1476-5578. ; 28, s. 5251-5261
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental healthdisorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P=9.8×10-12, R2=1.9%) and continuous (P=6.4×10-9, R2=2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P=3.9×10-4, R2=0.9%), but not for the continuous outcome (P=0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
  •  
4.
  • Nöll, Gilbert, et al. (författare)
  • Electronic structure and properties of poly- and oligoazulenes
  • 2008
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 112:6, s. 2156-2164
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most important research interests in the field of organic photovoltaic devices (OPVs) is the development of new materials which can serve as light-absorbing electron donors and hole-conducting (p-type) semiconductors. In this context, 1,3-polyazulenes were synthesized chemically and electrochemically. Their spectroscopic and electrochemical properties are compared with those of the 1,3-oligoazulenes Az(1)-Az(6). The UV-vis spectra of the neutral azulenes Az(1)-Az(6) show a linear correlation between the lowest absorption maximum and the inverse chain length 1/n leading to a band gap of E-g = 1.90 eV for infinite chain length. Derived from this correlation the effective conjugation length of chemically synthesized polyazulene is only about 10. By an alternative approach, a band gap of E-g = 1.46 eV was determined. Depending on the applied potential the oligomers Az(2)-Az(6) undergo up to two reversible oxidation processes or further polymerization which results in the formation of polymer films at the electrode. The potentiodynamic oxidation of chemically synthesized polyazulene leads to electrocrystallization at the electrode, whereas films of polyazulenes are obtained directly upon oxidation of Az(1)-Az(6). Chemically and electrochemically generated polyazulenes adsorbed on Pt show similar electrochemical behavior upon positive doping. The spectroelectrochemical investigations in combination with density functional theory (DFT) calculations lead to the conclusion that polyazulene can be oxidized up to a doping level of one charge per three or four azulene units. At this stage polarons or polaron pairs are formed (depending on the doping level) but not bipolarons. At higher doping levels the polymers start to decompose.
  •  
5.
  • Ständer, Sonja, et al. (författare)
  • IFSI-Guideline on Chronic Prurigo including Prurigo nodularis.
  • 2020
  • Ingår i: ITCH. - : Ovid Technologies (Wolters Kluwer Health). - 2380-5048. ; 5:4, s. 1-13
  • Forskningsöversikt (refereegranskat)abstract
    • Chronic prurigo (CPG) is a highly burdensome pruritic disease characterized by chronic itch, a prolonged scratching behavior and the development of localized or generalized hyperkeratotic pruriginous lesions. Neuronal sensitization and the development of an itch-scratch cycle contribute to the augmentation of pruritus and the chronicity of the disease. We provide here the first international guideline for a rational diagnostic and therapeutic approach for CPG. Recommendations are based on available evidence and expert opinion. The diagnosis of CPG is made clinically. A detailed medical history together with laboratory and radiological examinations are advised in order to determine the severity of CPG, identify the underlying origin of the itch and assist in the elaboration of a treatment plan. Therapeutically, it is advised to adopt a multimodal approach, including general strategies to control itch, treatment of the underlying pruritic conditions, and of the pruriginous lesions. Topical (corticosteroids, calcineurin inhibitors, capsaicin) and systemic antipruritic agents (eg, gabapentinoids, immunosuppressants, and opioid modulators) as well as physical treatment modalities (phototherapy, cryotherapy) should be employed in a step-wise approach. Psychosomatic or psychological interventions may be recommended in CPG patients with signs of psychiatric/psychological comorbidities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy