SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lampert A.) "

Sökning: WFRF:(Lampert A.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Shupe, M. D., et al. (författare)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
4.
  • Wendisch, M., et al. (författare)
  • Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)(3) Project
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)(3) project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric-ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
  •  
5.
  •  
6.
  • Legradi, J. B., et al. (författare)
  • An ecotoxicological view on neurotoxicity assessment
  • 2018
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 30
  • Forskningsöversikt (refereegranskat)abstract
    • The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
  •  
7.
  • Eberhardt, Mirjam, et al. (författare)
  • H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway.
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5:Jul 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system.
  •  
8.
  • Andersson, Michael, 1980, et al. (författare)
  • Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder.
  • 2012
  • Ingår i: Autonomic neuroscience : basic & clinical. - : Elsevier BV. - 1872-7484. ; 170:1-2, s. 5-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional studies have shown altered cholinergic mechanisms in the inflamed bladder, which partly depend on muscarinic receptor-induced release of nitric oxide (NO). The current study aimed to characterize which muscarinic receptor subtypes that are involved in the regulation of the nitrergic effects in the bladder cholinergic response during cystitis. For this purpose, in vitro examinations of carbachol-evoked contractions of inflamed and normal bladder preparations were performed. The effects of antagonists with different selectivity for the receptor subtypes were assessed on intact and urothelium-denuded bladder preparations. In preparations from cyclophosphamide (CYP; in order to induce cystitis) pre-treated rats, the response to carbachol was about 75% of that of normal preparations. Removal of the urothelium or administration of a nitric oxide synthase inhibitor re-established the responses in the inflamed preparations. Administration of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) inhibited the carbachol-induced contractile responses of preparations from CYP pre-treated rats less potently than controls. Pirenzepine and p-fluoro-hexahydro-sila-diphenidol (pFHHSiD) affected the carbachol-induced contractile responses to similar extents in preparations of CYP pre-treated and control rats. However, the Schild slopes for the three antagonists were all significantly different from unity in the preparations from CYP pre-treated rats. Again, l-NNA or removal of the urothelium eliminated any difference compared to normal preparations. This study confirms that muscarinic receptor stimulation in the inflamed rat urinary bladder induces urothelial release of NO, which counteracts detrusor contraction.
  •  
9.
  • Fransén, Erik, 1962-, et al. (författare)
  • Computational modeling of activity dependent velocity changes in peripheral C-fibers
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • Initiation and propagation of action potentials along unmyelinated C-fibers are the first steps of the pain pathway. Propagation velocity and its fiber class-specific activity-dependent slowing (ADS) is intimately linked to fibre excitability. In chronic pain patients, ADS alterations have been suggested to reflect increased excitability, possibly underlying clinical pain. Due to their small diameter, peripheral axons of nociceptors in patients are not accessible for intraaxonal recordings of their ion channel properties. We have therefore constructed a model of a C-fibre to study the relationship between ion channel composition and velocity changes as well as excitability. Ion channels are modeled from data of DRG somata using a Hodgkin-Huxley formalism (Na currents: TTX-sensitive, Nav1.8, Nav1.9, K currents: Kdr, A-type, Kv7.3, non-specific cationic: HCN). Moreover, ion pumps (Na/K-ATPase) and concentrations of intra and extraaxonal sodium and potassium are also included. The geometry and temperature of the fibre represents a section of the superficial branch and the deeper parent and is represented by a multicompartmental structure where each compartment contains passive as well as ion channel and pump elements. Using parameter estimation techniques, we optimized ion channel and pump expression pattern such that basic electrophysiological characteristics of the action potential and its velocity matched the experimental data. Moreover, we have also replicated activity dependent slowing. In ongoing work, we extend optimization to also include recovery cycles. The model will be used to study hypothesis of the relationship between individual ion channel subtypes and axonal excitability related to pain, generating independent information on impact of selective neuronal targets.
  •  
10.
  • Fransén, Erik, 1962-, et al. (författare)
  • Differences in action potential propagation in mechanosensitive and insensitive C-nociceptors - a modeling approach
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • C-fibers, unmyelinated afferent axons, convey information from the periphery of the nervous system to the spinal cord. They transmit signals originating from noxious stimulation evoking the sensations of itch and pain in the central nervous system. Different classes of C-fibers are characterized by functional, morphological and biochemical characteristics. In pain studies, a classification into mechano-insensitive (CMi) and mechano responsive fibers (CM) has proven useful as changes in proportions and response characteristics of these fibers have been observed in neuropathy patients (Weidner et al. 1999, 2000; Orstavik 2003, 2010). In this study, using computational modeling of a C-fiber, we have studied the possible contribution of different ion channel subtypes (Na-TTXs, Nav1.8, Nav1.9, Kdr, KA, KM, K(Na), h) as well as the Na/K-ATPase pump to conductive properties of C-fibers. In particular we investigated mechanisms that could generate the fiber-specific differences between CM and CMi fibers with regard to activity dependent slowing (ADS) and recovery cycles (RC). In our study we represent the axon by three cylindrical sections, one representing the peripheral thin end (branch, 2.5 cm), one the central part (parent, 10 cm) and a conical section between these (0.5 cm). In total 730 compartments are used. Temperature is set to 32 degrees C in branch and 37 degrees in parent sections. We represent variable ion concentrations of Na and K intra axonally, periaxonally and extracellularly, from which reversal potentials are calculated. We use ion channel models based on Hodgkin Huxley formalism. An ion pump (Na/K-ATPase) is included. We find that TTX-sensitive Na and Nav1.8 have the strongest influence on action potential conduction velocity as is expected since these are the major components of the rising phase of the action potential. Preliminary observations indicate that a small subset of Na and K currents play a key role in determining differences in activity dependent velocity changes (ADS) in the two fiber classes. We plan to also study contributions from morphological characteristics (superficial branch lengths) to activity dependent differences between the fiber classes (Schmidt et al. 2002). We further intend to investigate candidate ion channels which could play a role in changing the functional characteristics of a CMi fiber to that of a CM fiber. Our studies may provide insights into ionic changes underlying changes in the excitability of C-fibers associated with pain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy