SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lampert Angelika) "

Sökning: WFRF:(Lampert Angelika)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eberhardt, Mirjam, et al. (författare)
  • H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway.
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5:Jul 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system.
  •  
2.
  • Kist, Andreas M., et al. (författare)
  • SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by micro-neurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p. M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p. M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.
  •  
3.
  •  
4.
  • Petersson, Marcus E., et al. (författare)
  • Differential Axonal Conduction Patterns of Mechano-Sensitive and Mechano-Insensitive Nociceptors - A Combined Experimental and Modelling Study
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:8, s. e103556-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels Na(V)1.7 and Na(V)1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less K-dr and Na(V)1.8 in combination with more Na(V)1.7 and Na+/ K(+)AT-Pase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.
  •  
5.
  • Petäjä, Tuukka, et al. (författare)
  • Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:14, s. 8551-8592
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project iCUPE - integrative and Comprehensive Understanding on Polar Environments to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.
  •  
6.
  • Tigerholm, Jenny, 1981-, et al. (författare)
  • C-Fiber Recovery Cycle Supernormality Depends on Ion Concentration and Ion Channel Permeability
  • 2015
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 108:5, s. 1057-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Following each action potential, C-fiber nociceptors undergo cyclical changes in excitability, including a period of superexcitability, before recovering their basal excitability state. The increase in superexcitability during this recovery cycle depends upon their immediate firing history of the axon, but also determines the instantaneous firing frequency that encodes pain intensity. To explore the mechanistic underpinnings of the recovery cycle phenomenon a biophysical model of a C-fiber has been developed. The model represents the spatial extent of the axon including its passive properties as well as ion channels and the Na/K-ATPase ion pump. Ionic concentrations were represented inside and outside the membrane. The model was able to replicate the typical transitions in excitability from subnormal to supernormal observed empirically following a conducted action potential. In the model, supernormality depended on the degree of conduction slowing which in turn depends upon the frequency of stimulation, in accordance with experimental findings. In particular, we show that activity-dependent conduction slowing is produced by the accumulation of intraaxonal sodium. We further show that the supernormal phase results from a reduced potassium current K-dr as a result of accumulation of periaxonal potassium in concert with a reduced influx of sodium through Na(v)1.7 relative to Na(v)1.8 current. This theoretical prediction was supported by data from an in vitro preparation of small rat dorsal root ganglion somata showing a reduction in the magnitude of tetrodotoxin-sensitive relative to tetrodotoxin - resistant whole cell current. Furthermore, our studies provide support for the role of depolarization in supernormality, as previously suggested, but we suggest that the basic mechanism depends on changes in ionic concentrations inside and outside the axon. The understanding of the mechanisms underlying repetitive discharges in recovery cycles may provide insight into mechanisms of spontaneous activity, which recently has been shown to correlate to a perceived level of pain.
  •  
7.
  • Tigerholm, Jenny, et al. (författare)
  • Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors
  • 2014
  • Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 111:9, s. 1721-1735
  • Tidskriftsartikel (refereegranskat)abstract
    • Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers. We have therefore adopted an alternative approach to examine the basis of activity-dependent changes in axonal conduction by constructing a comprehensive mathematical model of human cutaneous C-fibers. Our model reproduced axonal spike propagation at a velocity of 0.69 m/s commensurate with recordings from human C-nociceptors. Activity-dependent slowing (ADS) of axonal propagation velocity was adequately simulated by the model. Interestingly, the property most readily associated with ADS was an increase in the concentration of intra-axonal sodium. This affected the driving potential of sodium currents, thereby producing latency changes comparable to those observed for experimental ADS. The model also adequately reproduced post-action potential excitability changes (i.e., recovery cycles) observed in vivo. We performed a series of control experiments replicating blockade of particular ion channels as well as changing temperature and extracellular ion concentrations. In the absence of direct experimental approaches, the model allows specific hypotheses to be formulated regarding the mechanisms underlying activity-dependent changes in C-fiber conduction. Because ADS might functionally act as a negative feedback to limit trains of nociceptor activity, we envisage that identifying its mechanisms may also direct efforts aimed at alleviating neuronal hyperexcitability in pain patients.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
annan publikation (2)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lampert, Angelika (7)
Schmelz, Martin (6)
Fransen, Erik (4)
Namer, Barbara (3)
Riipinen, Ilona (1)
Massling, Andreas (1)
visa fler...
Skov, Henrik (1)
MacLeod, Matthew (1)
Ebinghaus, Ralf (1)
Zygmunt, Peter (1)
Högestätt, Edward (1)
Baltensperger, Urs (1)
Prevot, Andre S. H. (1)
Franck, Anna (1)
Petersson, Marcus E. ... (1)
Fransén, Erik, 1962- (1)
Ivanović-Burmazović, ... (1)
Sachs, Torsten (1)
Petäjä, Tuukka (1)
Vitale, Vito (1)
Babes, Alexandru (1)
Kichko, Tatjana I. (1)
Neacsu, Cristian (1)
Wehner, Birgit (1)
Schmale, Julia (1)
Eleftheriadis, Konst ... (1)
Weidner, Christian (1)
Duplissy, Ella-Maria (1)
El Haddad, Imad (1)
Berchet, Antoine (1)
Paris, Jean-Daniel (1)
Konstantinov, Pavel (1)
Wollberg, Patrik (1)
Bossi, Rossana (1)
Paasonen, Pauli (1)
Shevchenko, Vladimir (1)
Schmidt, Roland (1)
Zhang, Zhiping (1)
Petersson, Marcus (1)
Eberhardt, Mirjam (1)
Dux, Maria (1)
Miljkovic, Jan (1)
Cordasic, Nada (1)
Will, Christine (1)
de la Roche, Jeanne (1)
Fischer, Michael (1)
Suárez, Sebastián A (1)
Bikiel, Damian (1)
Dorsch, Karola (1)
Leffler, Andreas (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (5)
Uppsala universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy