SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lampert Astrid) "

Sökning: WFRF:(Lampert Astrid)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoffmann, Anne, et al. (författare)
  • Remote sensing and in situ measurements of tropospheric aerosol, a pamarcmip case study
  • 2012
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 52, s. 56-66
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a closure experiment for tropospheric aerosol is presented. Aerosol size distributions and single scattering albedo from remote sensing data are compared to those measured in-situ. An aerosol pollution event on 4 April 2009 was observed by ground based and airborne lidar and photometer in and around Ny-Alesund, Spitsbergen, as well as by DMPS, nephelometer and particle soot absorption photometer at the nearby Zeppelin Mountain Research Station. The presented measurements were conducted in an area of 40 x 20 km around Ny-Alesund as part of the 2009 Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP). Aerosol mainly in the accumulation mode was found in the lower troposphere, however, enhanced backscattering was observed up to the tropopause altitude. A comparison of meteorological data available at different locations reveals a stable multi-layer-structure of the lower troposphere. It is followed by the retrieval of optical and microphysical aerosol parameters. Extinction values have been derived using two different methods, and it was found that extinction (especially in the UV) derived from Raman lidar data significantly surpasses the extinction derived from photometer AOD profiles. Airborne lidar data shows volume depolarization values to be less than 2.5% between 500 m and 2.5 km altitude, hence, particles in this range can be assumed to be of spherical shape. In-situ particle number concentrations measured at the Zeppelin Mountain Research Station at 474 m altitude peak at about 0.18 mu m diameter, which was also found for the microphysical inversion calculations performed at 850 m and 1500 m altitude. Number concentrations depend on the assumed extinction values, and slightly decrease with altitude as well as the effective particle diameter. A low imaginary part in the derived refractive index suggests weakly absorbing aerosols, which is confirmed by low black carbon concentrations, measured at the Zeppelin Mountain as well as on board the Polar 5 aircraft.
  •  
2.
  • Lampert, Astrid, et al. (författare)
  • Inclined Lidar Observations of Boundary Layer Aerosol Particles above the Kongsfjord, Svalbard
  • 2012
  • Ingår i: Acta geophysica. - : Springer Science and Business Media LLC. - 1895-6572 .- 1895-7455. ; 60:5, s. 1287-1307
  • Tidskriftsartikel (refereegranskat)abstract
    • An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Alesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.
  •  
3.
  • Petäjä, Tuukka, et al. (författare)
  • Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:14, s. 8551-8592
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project iCUPE - integrative and Comprehensive Understanding on Polar Environments to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy