SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landgren Oskar) "

Sökning: WFRF:(Landgren Oskar)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fouilloux, Anne, et al. (författare)
  • Building on Communities to Further Software Sustainability
  • 2023
  • Ingår i: Computing in science & engineering (Print). - : IEEE COMPUTER SOC. - 1521-9615 .- 1558-366X. ; 25:3, s. 84-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic e-Infrastructure Collaboration on Earth System Modeling Tools is a small community comprising members with diverse backgrounds, skills, and interests. Largely dependent on temporary staff to develop, operate, and maintain large scientific codes, this community devised strategies to enhance software reusability and sustainability. These strategies include collaborating with other communities for support, adopting Open Science as well as findable, accessible, interoperable, and reusable principles to optimize resource usage, growing essential knowledge within the community, and setting up a community of practice to facilitate onboarding and offboarding. The strategies also promote inclusiveness, foster external collaboration, and recognize technical contributions.
  •  
2.
  • Lind, Petter, 1979-, et al. (författare)
  • Benefits and added value of convection-permitting climate modeling over Fenno-Scandinavia
  • 2020
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 55:7-8, s. 1893-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • Convection-permitting climate models have shown superior performance in simulating important aspects of the precipitation climate including extremes and also to give partly different climate change signals compared to coarser-scale models. Here, we present the first long-term (1998–2018) simulation with a regional convection-permitting climate model for Fenno-Scandinavia. We use the HARMONIE-Climate (HCLIM) model on two nested grids; one covering Europe at 12 km resolution (HCLIM12) using parameterized convection, and one covering Fenno-Scandinavia with 3 km resolution (HCLIM3) with explicit deep convection. HCLIM12 uses lateral boundaries from ERA-Interim reanalysis. Model results are evaluated against reanalysis and various observational data sets, some at high resolutions. HCLIM3 strongly improves the representation of precipitation compared to HCLIM12, most evident through reduced “drizzle” and increased occurrence of higher intensity events as well as improved timing and amplitude of the diurnal cycle. This is the case even though the model exhibits a cold bias in near-surface temperature, particularly for daily maximum temperatures in summer. Simulated winter precipitation is biased high, primarily over complex terrain. Considerable undercatchment in observations may partly explain the wet bias. Examining instead the relative occurrence of snowfall versus rain, which is sensitive to variance in topographic heights it is shown that HCLIM3 provides added value compared to HCLIM12 also for winter precipitation. These results, indicating clear benefits of convection-permitting models, are encouraging motivating further exploration of added value in this region, and provide a valuable basis for impact studies.
  •  
3.
  • Lind, Petter, 1979-, et al. (författare)
  • Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 61:1-2, s. 519-541
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results from high-resolution climate change simulations that permit convection and resolve mesoscale orography at 3-km grid spacing over Fenno-Scandinavia using the HARMONIE-Climate (HCLIM) model. Two global climate models (GCMs) have been dynamically down-scaled for the RCP4.5 and RCP8.5 emission scenarios and for both near and far future periods in the 21st century. The warmer and moister climate conditions simulated in the GCMs lead to changes in precipitation characteristics. Higher precipitation amounts are simulated in fall, winter and spring, while in summer, precipitation increases in northern Fenno-Scandinavia and decreases in the southern parts of the domain. Both daily and sub-daily intense precipitation over Fenno-Scandinavia become more frequent at the expense of low-intensity events, with most pronounced shifts in summer. In the Scandinavian mountains, pronounced changes occur in the snow climate with a shift in precipitation falling as snow to rain, reduced snow cover and less days with a significant snow depth. HCLIM at 3-km grid spacing exhibits systematically different change responses in several aspects, e.g. a smaller shift from snow to rain in the western part of the Scandinavian mountains and a more consistent decrease in the urban heat island effect by the end of the 21st century. Most importantly, the high-resolution HCLIM shows a significantly stronger increase in summer hourly precipitation extremes compared to HCLIM at the intermediate 12-km grid spacing. In addition, an analysis of the statistical significance of precipitation changes indicates that simulated time periods of at least a couple of decades is recommended to achieve statistically robust results, a matter of important concern when running such high-resolution climate model experiments. The results presented here emphasizes the importance of using “convection-permitting” models to produce reliable climate change information over the Fenno-Scandinavian region.
  •  
4.
  • Pommier, Matthieu, 1984, et al. (författare)
  • Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:1, s. 103-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030) and medium-term (2050) futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3) and fine particulate matter (PM 2.5 ) for India in a world of changing emissions and climate. The reference scenario (for present-day) is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O 3 (r = 0.9) and high spatial correlation for PM 2.5 (r = 0.5 and r = 0.8 depending on the data set) between the model results and observations. While the overall bias in PM 2.5 is small (lower than 6%), the model overestimates O 3 by 35%. The underestimation in NO x titration is probably the main reason for the O 3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data. For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O 3 pollution, with a region in the north characterized by a statistically significant increase by up to 4% (2 ppb) and one in the south by a decrease up to -3% (-1.4 ppb). This variation in O 3 is assumed to be partly related to changes in O 3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds. Our calculations suggest that PM 2.5 will increase by up to 6.5% over the Indo-Gangetic Plain by the 2050s. The increase over India is driven by increases in dust, particulate organic matter (OM) and secondary inorganic aerosols (SIAs), which are mainly affected by the change in precipitation, biogenic emissions and wind speed. The large increase in anthropogenic emissions has a larger impact than climate change, causing O 3 and PM 2.5 levels to increase by 13 and 67% on average in the 2050s over the main part of India, respectively. By the 2030s, secondary inorganic aerosol is predicted to become the second largest contributor to PM 2.5 in India, and the largest in the 2050s, exceeding OM and dust.
  •  
5.
  • Seland, Øyvind, et al. (författare)
  • Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:12, s. 6165-6200
  • Tidskriftsartikel (refereegranskat)abstract
    • The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemistry models. The atmosphere component of NorESM2 (CAM-Nor) includes a different module for aerosol physics and chemistry, including interactions with cloud and radiation; additionally, CAM-Nor includes improvements in the formulation of local dry and moist energy conservation, in local and global angular momentum conservation, and in the computations for deep convection and air-sea fluxes. The surface components of NorESM2 have minor changes in the albedo calculations and to land and sea-ice models. We present results from simulations with NorESM2 that were carried out for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two versions of the model are used: one with lower (similar to 2 degrees) atmosphere-land resolution and one with medium (similar to 1 degrees) atmosphere-land resolution. The stability of the pre-industrial climate and the sen- sitivity of the model to abrupt and gradual quadrupling of CO2 are assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. Compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 appears less sensitive to greenhouse gas forcing than its predecessors, with an estimated equilibrium climate sensitivity of 2.5 K in both resolutions on a 150-year time frame; however, this estimate increases with the time window and the climate sensitivity at equilibration is much higher. We also consider the model response to future scenarios as defined by selected Shared Socioeconomic Pathways (SSPs) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period 2090-2099 compared to 1850-1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM-MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactory evolution of recent sea-ice area. In NorESM2-LM, an ice-free Arctic Ocean is only avoided in the SSP1-2.6 scenario.
  •  
6.
  • Vogel, L., et al. (författare)
  • Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:9, s. 1785-1804
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO(2)) or sulphuric acid (H(2)SO(4)) aerosols potentially affects e. g. windows, air frame and may cause permanent damage to engines. SO(2) receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO(2) via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO(2) in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatepetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO(2) in the flight direction and at +/- 40 mrad (2.3 degrees) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO(2) was measured at all times well above the detection limit. In combination with radiative transfer studies, this study indicates that an extended volcanic cloud with a concentration of 10(12) molecules cm(-3) at typical flight levels of 10 km can be detected unambiguously at distances of up to 80 km away. This range provides enough time (approx. 5 min) for pilots to take action to avoid entering a volcanic cloud in the flight path, suggesting that this technique can be used as an effective aid to prevent dangerous aircraft encounters with potentially ash rich volcanic clouds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy