SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landström Jens) "

Sökning: WFRF:(Landström Jens)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hamark, Christoffer, et al. (författare)
  • Enantioselective Binding of Propranolol and Analogues Thereof to Cellobiohydrolase Cel7A
  • 2018
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 24:68, s. 17975-17985
  • Tidskriftsartikel (refereegranskat)abstract
    • At the catalytic site for the hydrolysis of cellulose the enzyme cellobiohydrolase Cel7A binds the enantiomers of the adrenergic beta-blocker propranolol with different selectivity. Methyl-to-hydroxymethyl group modifications of propranolol, which result in higher affinity and improved selectivity, were herein studied by H-1,H-1 and H-1,C-13 scalar spin-spin coupling constants as well as utilizing the nuclear Overhauser effect (NOE) in conjunction with molecular dynamics simulations of the ligands per se, which showed the presence of all-antiperiplanar conformations, except for the one containing a vicinal oxygen-oxygen arrangement governed by the gauche effect. For the ligand-protein complexes investigated by NMR spectroscopy using, inter alia, transferred NOESY and saturation-transfer difference (STD) NMR experiments the S-isomers were shown to bind with a higher affinity and a conformation similar to that preferred in solution, in contrast to the R-isomer. The fact that the S-form of the propranolol enantiomer is pre-arranged for binding to the protein is also observed for a crystal structure of dihydroxy-(S)-propranolol and Cel7A presented herein. Whereas the binding of propranolol is entropy driven, the complexation with the dihydroxy analogue is anticipated to be favored also by an enthalpic term, such as for its enantiomer, that is, dihydroxy-(R)-propranolol, because hydrogen-bond donation replaces the corresponding bonding from hydroxyl groups in glucosyl residues of the natural substrate. In addition to a favorable entropy component, albeit lesser in magnitude, this represents an effect of enthalpy-to-entropy compensation in ligand-protein interactions.
  •  
2.
  • Hamark, Christoffer, et al. (författare)
  • Ethyl 3,6-di-O-benzyl-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside
  • 2010
  • Ingår i: Acta Crystallographica Section E. - 1600-5368. ; E66, s. o3250-o3251
  • Tidskriftsartikel (refereegranskat)abstract
    • In the title compound, C30H31NO6S, the plane of the N-phthalimido group is nearly orthogonal to the least-squares plane of the sugar ring (defined by atoms C2, C3, C5 and O5 using standard glucose nomenclature), making a dihedral angle of 72.8 (1)°. The thioethyl group has the exo-anomeric conformation. The hydroxy group forms an intermolecular hydrogen bond to the O atom in the sugar ring, generating [100] chains. There are four close - contacts with centroid-centroid distances less than 4.0 Å, all with dihedral angles between the interacting systems of only 8°, supporting energetically favourable stacking interactions
  •  
3.
  •  
4.
  • Hamark, Christoffer, 1983-, et al. (författare)
  • SEAL by NMR : Glyco-Based Selenium-Labeled Affinity Ligands Detected by NMR Spectroscopy
  • 2014
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 20:43, s. 13905-13908
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a method for the screening of interactions between proteins and selenium-labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR-active handle and reports on binding through Se-77 NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to C-13 NMR, while the NMR spectral width is ten times larger, yielding little overlap in Se-77 NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium-based bioactive compounds, such as glycomimetic drug candidates.
  •  
5.
  •  
6.
  •  
7.
  • Landström, Jens, et al. (författare)
  • Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies
  • 2012
  • Ingår i: Organic and biomolecular chemistry. - : Royal Society of Chemistry (RSC). - 1477-0520 .- 1477-0539. ; 10:15, s. 3019-3032
  • Tidskriftsartikel (refereegranskat)abstract
    • By examining the interactions between the protein hen egg-white lysozyme (HEWL) and commercially available and chemically synthesized carbohydrate ligands using a combination of weak affinity chromatography (WAC), NMR spectroscopy and molecular simulations, we report on new affinity data as well as a detailed binding model for the HEWL protein. The equilibrium dissociation constants of the ligands were obtained by WAC but also by NMR spectroscopy, which agreed well. The structures of two HEWL-disaccharide complexes in solution were deduced by NMR spectroscopy using H-1 saturation transfer difference (STD) effects and transferred H-1,H-1-NOESY experiments, relaxation-matrix calculations, molecular docking and molecular dynamics simulations. In solution the two disaccharides beta-D-Galp-(1 -> 4)-beta-D-GlcpNAc-OMe and beta-D-GlcpNAc-(1 -> 4)-beta-D-GlcpNAc-OMe bind to the B and C sites of HEWL in a syn-conformation at the glycosidic linkage between the two sugar residues. Intermolecular hydrogen bonding and CH/pi-interactions form the basis of the protein-ligand complexes in a way characteristic of carbohydrate-protein interactions. Molecular dynamics simulations with explicit water molecules of both the apo-form of the protein and a ligand-protein complex showed structural change compared to a crystal structure of the protein. The flexibility of HEWL as indicated by a residue-based root-mean-square deviation analysis indicated similarities overall, with some residue specific differences, inter alia, for Arg61 that is situated prior to a flexible loop. The Arg61 flexibility was notably larger in the ligand-complexed form of HEWL. N,N'-Diacetylchitobiose has previously been observed to bind to HEWL at the B and C sites in water solution based on H-1 NMR chemical shift changes in the protein whereas the disaccharide binds at either the B and C sites or the C and D sites in different crystal complexes. The present study thus highlights that protein-ligand complexes may vary notably between the solution and solid states, underscoring the importance of targeting the pertinent binding site(s) for inhibition of protein activity and the advantages of combining different techniques in a screening process.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy