SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landstreet J. D.) "

Sökning: WFRF:(Landstreet J. D.)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wade, G. A., et al. (författare)
  • The MiMeS survey of magnetism in massive stars : introduction and overview
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 2-22
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada-France-Hawaii Telescope, Narval at the Telescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
  •  
2.
  • Folsom, C. P., et al. (författare)
  • Magnetic fields and chemical peculiarities of the very young intermediate-mass binary system HD 72106
  • 2008
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 391:2, s. 901-914
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently discovered magnetic Herbig Ae and Be stars may provide qualitatively new information about the formation and evolution of magnetic Ap and Bp stars. We have performed a detailed investigation of one particularly interesting binary system with a Herbig Ae secondary and a late B-type primary possessing a strong, globally ordered magnetic field. 20 high-resolution Stokes V spectra of the system were obtained with the ESPaDOnS instrument mounted on the Canada-France-Hawaii Telescope. In these observations we see clear evidence for a magnetic field in the primary, but no evidence for a magnetic field in the secondary. A detailed abundance analysis was performed for both stars, revealing strong chemical peculiarities in the primary and normal chemical abundances in the secondary. The primary is strongly overabundant in Si, Cr and other iron-peak elements, as well as Nd, and underabundant in He. The primary therefore appears to be a very young Bp star. In this context, line profile variations of the primary suggest non-uniform lateral distributions of surface abundances. Interpreting the 0.639 95 +/- 0.000 09 d variation period of the Stokes I and V profiles as the rotational period of the star, we have modelled the magnetic field geometry and the surface abundance distributions of Si, Ti, Cr and Fe using magnetic Doppler imaging. We derive a dipolar geometry of the surface magnetic field, with a polar strength B-d = 1230 G and an obliquity beta = 57 degrees. The distributions Ti, Cr and Fe are all qualitatively similar, with an elongated patch of enhanced abundance situated near the positive magnetic pole. The Si distribution is somewhat different, and its relationship to the magnetic field geometry less clear.
  •  
3.
  • Bailey, J. D., et al. (författare)
  • Magnetic field and atmospheric chemical abundances of the magnetic Ap star HD 318107
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A25-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A new generation of powerful and efficient spectropolarimeters has recently been used to provide the first sample of magnetic Ap stars of accurately known ages. Modelling of these data offer the possibility of significant new insights into the physics and main sequence evolution of these remarkable stars.Aims. New spectra have been obtained with the ESPaDOnS spectropolarimeter, and are supplemented with unpolarised spectra from the ESO UVES, UVES-FLAMES, and HARPS spectrographs, of the very peculiar large-field magnetic Ap star HD 318107, a member of the open cluster NGC 6405 and thus a star with a well-determined age. The available data provide sufficient material with which to re-analyse the first-order model of the magnetic field geometry and to derive chemical abundances of Si, Ti, Fe, Nd, Pr, Mg, Cr, Mn, O, and Ca.Methods. The models were obtained using ZEEMAN, a program which synthesises spectral line profiles for stars that have magnetic fields. The magnetic field structure was modelled with a low-order colinear multipole expansion, using coefficients derived from the observed variations of the field strength with rotation phase. The abundances of several elements were determined using spectral synthesis. After experiments with a very simple model of uniform abundance on each of three rings of equal width in co-latitude and symmetric about the assumed magnetic axis, we decided to model the spectra assuming uniform abundances of each element over the stellar surface.Results. The new magnetic field measurements allow us to refine the rotation period of HD 318107 to P = 9.7088 +/- 0.0007 days. Appropriate magnetic field model parameters were found that very coarsely describe the (apparently rather complex) field moment variations. Spectrum synthesis leads to the derivation of mean abundances for the elements Mg, Si, Ca, Ti, Cr, Fe, Nd, and Pr. All of these elements except for Mg and Ca are strongly overabundant compared to the solar abundance ratios. There is considerable evidence of non-uniformity, for example in the different values of < B(z)> found using lines of different elements.Conclusions. The present data set, while limited, is nevertheless sufficient to provide a useful first-order assessment of both the magnetic and surface abundance properties of HD 318107, making it one of the very few magnetic Ap stars of well-known age for which both of these properties have been studied.
  •  
4.
  • Kochukhov, Oleg, et al. (författare)
  • Magnetic field topology and chemical abundance distributions of the young, rapidly rotating, chemically peculiar star HR5624
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The young, rapidly rotating Bp star HR5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry.Aims. We studied the magnetic field structure and chemical abundance distributions of HR5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods. We analysed high-resolution, time series Stokes parameter spectra of HR5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles.Results. We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations.Conclusions. We conclude that the surface magnetic field topology of HR5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that predominantly quadrupolar magnetic field topologies, invoked to be present in a significant number of stars, probably do not exist in real stars. This finding agrees with an outcome of the MHD simulations of fossil field evolution in stably stratified stellar interiors.
  •  
5.
  • Landstreet, J. D., et al. (författare)
  • BD-19 5044L : discovery of a short-period SB2 system with a magnetic Bp primary in the open cluster IC 4725
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Until recently almost nothing was known about the evolution of magnetic fields found in upper main sequence Ap/Bp stars during their long main sequence lifetime. We are thus studying magnetic Ap/Bp stars in open clusters in order to obtain observational evidence of how the properties of Ap/Bp magnetic stars, such as field strength and structure, evolve with age during the main sequence. One important aspect of this study is to search for the very rare examples of hot magnetic stars in short-period binary systems among magnetic cluster members. Aims. In this paper we characterise the object BD-19 5044L, which is both a member of the open cluster IC 4725 = M 25, and a short-period SB2 system containing a magnetic primary star. Methods. We have obtained a series of intensity and circular polarisation spectra distributed through the orbital and rotation cycles of BD-19 5044L with the ESPaDOnS spectropolarimeter at CFHT. From these data we determine the orbital and stellar properties of each component. Results. We find that the orbit of BD-19 5044L AB is quite eccentric (e = 0.477), with a period of 17.63 d. The primary is a magnetic Bp star with a variable longitudinal magnetic field, a polar field strength of similar to 1400 G and a low obliquity, while the secondary is probably a hot Am star and does not appear to be magnetic. The rotation period of the primary (5.04 d) is not synchronised with the orbit, but the rotation angular velocity is close to being synchronised with the orbital angular velocity of the secondary at periastron, perhaps as a result of tidal interactions. Because this system is a member of IC 4725, the two stars have a common age of log t = 8.02 +/- 0.05 dex. Conclusions. The periastron separation is small enough (about 12 times the radius of the primary star) that BD-19 5044L may be one of the very rare known cases of a tidally interacting SB2 binary system containing a magnetic Ap/Bp star.
  •  
6.
  • Manser, Christopher J., et al. (författare)
  • A planetesimal orbiting within the debris disc around a white dwarf star
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 364:6435, s. 66-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca II emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.
  •  
7.
  • Shultz, M. E., et al. (författare)
  • MOBSTER - VI. The crucial influence of rotation on the radio magnetospheres of hot stars
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:1, s. 1429-1448
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous magnetic hot stars exhibit gyrosynchrotron radio emission. The source electrons were previously thought to be accelerated to relativistic velocities in the current sheet formed in the middle magnetosphere by the wind opening magnetic field lines. However, a lack of dependence of radio luminosity on the wind power, and a strong dependence on rotation, has recently challenged this paradigm. We have collected all radio measurements of magnetic early-type stars available in the literature. When constraints on the magnetic field and/or the rotational period are not available, we have determined these using previously unpublished spectropolarimetric and photometric data. The result is the largest sample of magnetic stars with radio observations that has yet been analysed: 131 stars with rotational and magnetic constraints, of which 50 are radio-bright. We confirm an obvious dependence of gyrosynchrotron radiation on rotation, and furthermore find that accounting for rotation neatly separates stars with and without detected radio emission. There is a close correlation between H alpha emission strength and radio luminosity. These factors suggest that radio emission may be explained by the same mechanism responsible for H alpha emission from centrifugal magnetospheres, i.e. centrifugal breakout (CBO), however, while the H alpha-emitting magnetosphere probes the cool plasma before breakout, radio emission is a consequence of electrons accelerated in centrifugally driven magnetic reconnection.
  •  
8.
  • Shultz, M. E., et al. (författare)
  • The magnetic early B-type stars - IV. Breakout or leakage? : H α emission as a diagnostic of plasma transport in centrifugal magnetospheres
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 499:4, s. 5379-5395
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapidly rotating early-type stars with strong magnetic fields frequently show H alpha emission originating in centrifugal magnetospheres (CMs), circumstellar structures in which centrifugal support due to magnetically enforced corotation of the magnetically confined plasma enables it to accumulate to high densities. It is not currently known whether the CM plasma escapes via centrifugal breakout (CB), or by an unidentified leakage mechanism. We have conducted the first comprehensive examination of the H alpha emission properties of all stars currently known to display CM-pattern emission. We find that the onset of emission is dependent primarily on the area of the CM, which can be predicted simply by the value B-K of the magnetic field at the Kepler corotation radius R-K. Emission strength is strongly sensitive to both CM area and B-K. Emission onset and strength are not dependent on effective temperature, luminosity, or mass-loss rate. These results all favour a CB scenario; however, the lack of intrinsic variability in any CM diagnostics indicates that CB must be an essentially continuous process, i.e. it effectively acts as a leakage mechanism. We also show that the emission profile shapes are approximately scale-invariant, i.e. they are broadly similar across a wide range of emission strengths and stellar parameters. While the radius of maximum emission correlates closely as expected to R-K, it is always larger, contradicting models that predict that emission should peak at R-K.
  •  
9.
  • Alecian, E., et al. (författare)
  • Discovery of new magnetic early-B stars within the MiMeS HARPSpol survey
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. A28-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Magnetism in Massive Stars (MiMeS) project aims at understanding the origin of the magnetic fields in massive stars as well as their impact on stellar internal structure, evolution, and circumstellar environment. Aims. One of the objectives of the MiMeS project is to provide stringent observational constraints on the magnetic fields of massive stars; however, identification of magnetic massive stars is challenging, as only a few percent of high-mass stars host strong fields detectable with the current instrumentation. Hence, one of the first objectives of the MiMeS project was to search for magnetic objects among a large sample of massive stars, and to build a sub-sample for in-depth follow-up studies required to test the models and theories of fossil field origins, magnetic wind confinement and magnetospheric properties, and magnetic star evolution. Methods. We obtained high-resolution spectropolarimetric observations of a large number of OB stars thanks to three large programs (LP) of observations that have been allocated on the high-resolution spectropolarimeters ESPaDOnS, Narval, and the polarimetric module HARPSpol of the HARPS spectrograph. We report here on the methods and first analysis of the HARPSpol magnetic detections. We identified the magnetic stars using a multi-line analysis technique. Then, when possible, we monitored the new discoveries to derive their rotation periods, which are critical for follow-up and magnetic mapping studies. We also performed a first-look analysis of their spectra and identified obvious spectral anomalies (e. g., surface abundance peculiarities, Ha emission), which are also of interest for future studies. Results. In this paper, we focus on eight of the 11 stars in which we discovered or confirmed a magnetic field from the HARPSpol LP sample (the remaining three were published in a previous paper). Seven of the fields were detected in early-type Bp stars, while the last field was detected in the Ap companion of a normal early B-type star. We report obvious spectral and multiplicity properties, as well as our measurements of their longitudinal field strengths, and their rotation periods when we are able to derive them. We also discuss the presence or absence of Ha emission with respect to the theory of centrifugally-supported magnetospheres.
  •  
10.
  • Folsom, C. P., et al. (författare)
  • Magnetic, chemical and rotational properties of the Herbig Ae/Be binary system HD 72106
  • 2008
  • Ingår i: Contributions of the Astronomical Observatory Skalnaté Pleso. - 1335-1842. ; 38:2, s. 245-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, strong, globally-ordered magnetic fields have been detected in some Herbig Ae and Be (HAeBe) stars, suggesting a possible evolutionary connection to main sequence magnetic chemically peculiar Ap and Bp stars. We have undertaken a detailed study of the binary system HD 72106, which contains a B9 magnetic primary and a HAeBe secondary, using the ESPaDOnS spectropolarimeter mounted on the CFHT. A careful analysis of the very young primary reveals that it has an approximately dipolar magnetic field geometry, strong chemical peculiarities, and strong surface chemical abundance inhomogeneities. Thus the primary is very similar to an Ap/Bp star despite having completed less then 1.5% of its main sequence life, and possible still being on the pre-main sequence. In contrast, a similar analysis of the secondary reveals solar chemical abundances and no magnetic field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy