SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Langerock Bavo) "

Sökning: WFRF:(Langerock Bavo)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agustí-Panareda, Anna, et al. (författare)
  • Modelling CO2 weather-why horizontal resolution matters
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:11, s. 7347-7376
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change mitigation efforts require information on the current greenhouse gas atmospheric concentrations and their sources and sinks. Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas. Its variability in the atmosphere is modulated by the synergy between weather and CO2 surface fluxes, often referred to as CO2 weather. It is interpreted with the help of global or regional numerical transport models, with horizontal resolutions ranging from a few hundreds of kilometres to a few kilometres. Changes in the model horizontal resolution affect not only atmospheric transport but also the representation of topography and surface CO2 fluxes. This paper assesses the impact of horizontal resolution on the simulated atmospheric CO2 variability with a numerical weather prediction model. The simulations are performed using the Copernicus Atmosphere Monitoring Service (CAMS) CO2 forecasting system at different resolutions from 9 to 80 km and are evaluated using in situ atmospheric surface measurements and atmospheric column-mean observations of CO2, as well as radiosonde and SYNOP observations of the winds. The results indicate that both diurnal and day-to-day variability of atmospheric CO2 are generally better represented at high resolution, as shown by a reduction in the errors in simulated wind and CO2. Mountain stations display the largest improvements at high resolution as they directly benefit from the more realistic orography. In addition, the CO2 spatial gradients are generally improved with increasing resolution for both stations near the surface and those observing the total column, as the overall inter-station error is also reduced in magnitude. However, close to emission hotspots, the high resolution can also lead to a deterioration of the simulation skill, highlighting uncertainties in the high-resolution fluxes that are more diffuse at lower resolutions. We conclude that increasing horizontal resolution matters for modelling CO2 weather because it has the potential to bring together improvements in the surface representation of both winds and CO2 fluxes, as well as an expected reduction in numerical errors of transport. Modelling applications like atmospheric inversion systems to estimate surface fluxes will only be able to benefit fully from upgrades in horizontal resolution if the topography, winds and prior flux distribution are also upgraded accordingly. It is clear from the results that an additional increase in resolution might reduce errors even further. However, the horizontal resolution sensitivity tests indicate that the change in the CO2 and wind modelling error with resolution is not linear, making it difficult to quantify the improvement beyond the tested resolutions. Finally, we show that the high-resolution simulations are useful for the assessment of the small-scale variability of CO2 which cannot be represented in coarser-resolution models. These representativeness errors need to be considered when assimilating in situ data and high-resolution satellite data such as Greenhouse gases Observing Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), the Chinese Carbon Dioxide Observation Satellite Mission (TanSat) and future missions such as the Geostationary Carbon Observatory (GeoCarb) and the Sentinel satellite constellation for CO2. For these reasons, the high-resolution CO2 simulations provided by the CAMS in real time can be useful to estimate such small-scale variability in real time, as well as providing boundary conditions for regional modelling studies and supporting field experiments.
  •  
2.
  • Sha, Mahesh Kumar, et al. (författare)
  • Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:9, s. 6249-6304
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth's atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products' validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is -0.26 +/- 0.56 % in comparison to -0.68 +/- 0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22 +/- 3.45 % (standard TCCON XCO) and 2.45 +/- 3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5 +/- 3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions.
  •  
3.
  • von Clarmann, Thomas, et al. (författare)
  • Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4393-4436
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. Reported characterization data should be intercomparable between different instruments, empirically validatable, grid-independent, usable without detailed knowledge of the instrument or retrieval technique, traceable and still have reasonable data volume. The latter may force one to work with representative rather than individual characterization data. Many errors derive from approximations and simplifications used in real-world retrieval schemes, which are reviewed in this paper, along with related error estimation schemes. The main sources of uncertainty are measurement noise, calibration errors, simplifications and idealizations in the radiative transfer model and retrieval scheme, auxiliary data errors, and uncertainties in atmospheric or instrumental parameters. Some of these errors affect the result in a random way, while others chiefly cause a bias or are of mixed character. Beyond this, it is of utmost importance to know the influence of any constraint and prior information on the solution. While different instruments or retrieval schemes may require different error estimation schemes, we provide a list of recommendations which should help to unify retrieval error reporting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy