SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lappas Angelos A) "

Sökning: WFRF:(Lappas Angelos A)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dedes, Grigorios, et al. (författare)
  • Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis
  • 2021
  • Ingår i: Biotechnology for Biofuels. - : Springer Nature. - 1754-6834. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over the last few years, valorization of lignocellulosic biomass has been expanded beyond the production of second-generation biofuels to the synthesis of numerous platform chemicals to be used instead of their fossil-based counterparts. One such well-researched example is 5-hydroxymethylfurfural (HMF), which is preferably produced by the dehydration of fructose. Fructose is obtained by the isomerization of glucose, which in turn is derived by the hydrolysis of cellulose. However, to avoid harsh reaction conditions with high environmental impact, an isomerization step towards fructose is necessary, as fructose can be directly dehydrated to HMF under mild conditions. This work presents an optimized process to produce fructose from beechwood biomass hydrolysate and subsequently convert it to HMF by employing homogeneous catalysis.Results: The optimal saccharification conditions were identified at 10% wt. solids loading and 15 mg enzyme/gsolids, as determined from preliminary trials on pure cellulose (Avicel® PH-101). Furthermore, since high rate glucose isomerization to fructose requires the addition of sodium tetraborate, the optimum borate to glucose molar ratio was determined to 0.28 and was used in all experiments. Among 20 beechwood solid pulps obtained from different organosolv pretreatment conditions tested, the highest fructose production was obtained with acetone (160 °C, 120 min), reaching 56.8 g/100 g pretreated biomass. A scale-up hydrolysis in high solids (25% wt.) was then conducted. The hydrolysate was subjected to isomerization eventually leading to a high-fructose solution (104.5 g/L). Dehydration of fructose to HMF was tested with 5 different catalysts (HCl, H3PO4, formic acid, maleic acid and H-mordenite). Formic acid was found to be the best one displaying 79.9% sugars conversion with an HMF yield and selectivity of 44.6% and 55.8%, respectively.Conclusions: Overall, this work shows the feasibility of coupling bio- and chemo-catalytic processes to produce HMF from lignocellulose in an environmentally friendly manner. Further work for the deployment of biocatalysts for the oxidation of HMF to its derivatives could pave the way for the emergence of an integrated process to effectively produce biobased monomers from lignocellulose.
  •  
2.
  • Nitsos, Christos, et al. (författare)
  • The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals
  • 2013
  • Ingår i: The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. - : Elsevier. - 9780444563309 ; , s. 217-260
  • Bokkapitel (refereegranskat)abstract
    • The enzymatic hydrolysis of cellulose toward fermentable glucose is of paramount importance for the production of ethanol or other high-value chemicals from lignocellulosic biomass via the biochemical route. A pretreatment step is usually required that alters the structure and composition of biomass, reduces its recalcitrance, and allows the efficient enzymatic conversion of carbohydrates into sugars. Biomass pretreatment aims mainly at the selective separation of hemicellulose and/or lignin, either as oligomers or as smaller sugar and phenolic molecules, which can be further converted enzymatically or via chemical catalysis to platform chemicals or fuel precursors. In this chapter, a review of the most widely applied pretreatment methods is presented, with the aim of elucidating the role of chemical or biochemical catalysis in this first step of biomass valorization
  •  
3.
  • Kalogiannis, Konstantinos G, et al. (författare)
  • Acid Assisted Organosolv Delignification of Beechwood and Pulp Conversion towards High Concentrated Cellulosic Ethanol via High Gravity Enzymatic Hydrolysis and Fermentation
  • 2018
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 23:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Future biorefineries will focus on converting low value waste streams to chemical products that are derived from petroleum or refined sugars. Feedstock pretreatment in a simple, cost effective, agnostic manner is a major challenge.Methods: In this work, beechwood sawdust was delignified via an organosolv process, assisted by homogeneous inorganic acid catalysis. Mixtures of water and several organic solvents were evaluated for their performance. Specifically, ethanol (EtOH), acetone (AC), and methyl- isobutyl- ketone (MIBK) were tested with or without the use of homogeneous acid catalysis employing sulfuric, phosphoric, and oxalic acids under relatively mild temperature of 175 °C for one hour.Results: Delignification degrees (DD) higher than 90% were achieved, where both AC and EtOH proved to be suitable solvents for this process. Both oxalic and especially phosphoric acid proved to be good alternative catalysts for replacing sulfuric acid. High gravity simultaneous saccharification and fermentation with an enzyme loading of 8.4 mg/gsolids at 20 wt.% initial solids content reached an ethanol yield of 8.0 w/v%.Conclusions: Efficient delignification combining common volatile solvents and mild acid catalysis allowed for the production of ethanol at high concentration in an efficient manner
  •  
4.
  • Kalogiannis, Konstantinos G., et al. (författare)
  • Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis
  • 2019
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass fractionation, as an alternative to biomass pretreatment, has gained increasing research attention over the past few years as it provides separate streams of cellulose, hemicellulose, and lignin. These streams can be used separately and can provide a solution for improving the economics of emerging biorefinery technologies. The sugar streams are commonly used in microbial conversions, whereas during recent years lignin has been recognized as a valuable compound as it is the only renewable and abundant source of aromatic chemicals. Successfully converting lignin into valuable chemicals and products is key in achieving both environmental and economic sustainability of future biorefineries. In this work, lignin retrieved from beechwood sawdust delignification pretreatment via an organosolv process was depolymerized with thermal and catalytic pyrolysis. ZSM-5 commercial catalyst was used in situ to upgrade the lignin bio-oil vapors. Lignins retrieved from different modes of organosolv pretreatment were tested in order to evaluate the effect that upstream pretreatment has on the lignin fraction. Both thermal and catalytic pyrolysis yielded oils rich in phenols and aromatic hydrocarbons. Use of ZSM-5 catalyst assisted in overall deoxygenation of the bio-oils and enhanced aromatic hydrocarbons production. The oxygen content of the bio-oils was reduced at the expense of their yield. Organosolv lignins were successfully depolymerized towards phenols and aromatic hydrocarbons via thermal and catalytic pyrolysis. Hence, lignin pyrolysis can be an effective manner for lignin upgrading towards high added value products
  •  
5.
  • Kalogiannis, Konstantinos G., et al. (författare)
  • OxiOrganosolv : A novel acid free oxidative organosolv fractionation for lignocellulose fine sugar streams
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 313
  • Tidskriftsartikel (refereegranskat)abstract
    • The valorization of lignocellulosic biomass towards the production of value-added products requires an efficient pretreatment/fractionation step. In this work we present a novel, acid-free, mildly oxidative organosolv delignification process -OxiOrganosolv- which employs oxygen gas to depolymerize and remove lignin. The results demonstrate that the OxiOrganosolv process achieved lignin removal as high as 97% in a single stage, with a variety of solvents; it was also efficient in delignifying both beechwood (hardwood) and pine (softwood), a task in which organosolv pretreatments have failed in the past. Minimal amounts of sugar degradation products were detected, while cellulose recovery was ~100% in the solid pulp. Enzymatic hydrolysis of pulps showed >80 wt% cellulose conversion to glucose. Overall, the OxiOrganosolv pretreatment has significant advantages, including high delignification efficiency of hardwood and softwood biomass, absence of acid homogeneous catalysis and all corresponding challenges involved, and close to zero losses of sugars to degradation products.
  •  
6.
  • Kalogiannis, Konstantinos G., et al. (författare)
  • Pyrolysis of lignin with 2DGC quantification of lignin oil : Effect of lignin type, process temperature and ZSM-5 in situ upgrading
  • 2015
  • Ingår i: Journal of Analytical and Applied Pyrolysis. - : Elsevier BV. - 0165-2370 .- 1873-250X. ; 115, s. 410-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal and catalytic pyrolysis of various types of lignin and their influence on the yield and the quality of the produced lignin oil were studied. Lignins originated from a mixture of pine and spruce wood (softwood), a mixture of birch and aspen wood (hardwood) and Eucalyptus Urograndis. High degree of deoxygenation of the bio-oil and maximum yield of value-added chemicals were the main targets of this work. 2DGC-ToFMS analysis was used for the qualitative and quantitative characterization of the lignin oils. Softwood lignin was found to be the most attractive feedstock and high yields of a mixture of phenolic compounds were detected in all cases. High char production was also evident for all types of lignins accounting for almost 50% of the original feedstock. The use of a commercial ZSM-5 catalyst was extremely beneficial for the process, enhancing deoxygenation at higher oil yields compared to thermal pyrolysis. Depending on the nature of the lignin, guaiacyl or syringyl groups were dominant in the oils and it was found that process optimization, involving lignin, catalyst selection and temperature could significantly improve the process efficiency.
  •  
7.
  • Stephanidis, S.D., et al. (författare)
  • Catalytic upgrading of lignocellulosic biomass pyrolysis vapours : Effect of hydrothermal pre-treatment of biomass
  • 2011
  • Ingår i: Catalysis Today. - : Elsevier BV. - 0920-5861 .- 1873-4308. ; 167:1, s. 37-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The main objective of the present work was the study of the effect of hydrothermal pretreatment of lignocellulosic biomass (beech wood) on the product yields and bio-oil composition produced from biomass flash pyrolysis as well as from the catalytic upgrading of the biomass pyrolysis vapours. The hydrothermal pretreatment of lignocellulosic biomass was performed at a severity factor (Ro) of 3.55 leading to ∼35 wt.% loss of solids, mainly due to solubilization and removal of hemicellulose. The production of sugars (mainly levoglucosan) was significantly increased by the use of the hydrothermally pretreated biomass instead of the untreated biomass in the non-catalytic flash pyrolysis experiments. On the other hand, the concentration of carboxylic acids, ketones and phenols was decreased in the bio-oil derived from the pretreated biomass. The catalysts tested in the upgrading of the biomass pyrolysis vapours were the strongly acidic zeolites H-ZSM-5 and silicalite (with very low number of acid sites) and the mildly acidic mesoporous aluminosilicate Al-MCM-41. The effect of catalysts on product yields and composition of bio-oil in the upgrading of pyrolysis vapours, was similar for both the pretreated and untreated biomass. The use of zeolite H-ZSM-5 decreased the total liquid yield (bio-oil) via decreasing the organic phase of bio-oil and increasing its water content, accompanied by increase of gases and moderate formation of coke on the catalyst. The zeolite silicalite and the Al-MCM-41 induced similar effects with those of H-ZSM-5 but to a less extent, except of the significantly higher coke that was deposited on Al-MCM-41. With regard to the composition of the bio-oil, all the catalysts and mostly the strongly acidic H-ZSM-5 zeolite reduced the oxygen content of the organic fraction, mainly by decreasing the concentration of acids, ketones and phenols in the untreated biomass pyrolysis oil or the concentration of sugars in the pretreated biomass pyrolysis oil. Aromatics and polycyclic aromatic hydrocarbons (PAHs) were significantly increased by the use of all catalysts, for both types of biomass feed. A substantial increase in the concentration of phenols was observed in the upgraded bio-oil derived by the hydrothermally pretreated biomass, using the less acidic silicalite and Al-MCM-41 catalysts
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy