SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larfeldt J.) "

Sökning: WFRF:(Larfeldt J.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ehn, A., et al. (författare)
  • Investigations of microwave stimulation of a turbulent low-swirl flame
  • 2017
  • Ingår i: Proceedings of the Combustion Institute. - : Elsevier BV. - 1540-7489. ; 36:3, s. 4121-4128
  • Tidskriftsartikel (refereegranskat)abstract
    • Irradiating a flame by microwave radiation is one of several plasma-assisted combustion (PAC) technologies that can be used to modify the combustion chemical kinetics in order to improve flame-stability and to delay lean blow-out. One practical implication is that engines may be able to operate with leaner fuel mixtures and have an improved fuel flexibility capability including biofuels. In addition, this technology may assist in reducing thermoacoustic instabilities that may severely damage the engine and increase emission production. To examine microwave-assisted combustion a combined experimental and computational study of microwave-assisted combustion is performed for a lean, turbulent, swirl-stabilized, stratified flame at atmospheric conditions. The objectives are to demonstrate that the technology increases both the laminar and turbulent flame speeds, and modifies the chemical kinetics, enhancing the flame-stability at lean mixtures. The study combines experimental investigations using hydroxyl (OH) and formaldehyde (CH2O) Planar Laser-Induced Fluorescence (PLIF) and numerical simulations using finite rate chemistry Large Eddy Simulations (LES). The reaction mechanism is based on a methane (CH4)-air skeletal mechanism expanded with sub-mechanisms for ozone, singlet oxygen, chemionization, electron impact dissociation, ionization and attachment. The experimental and computational results show similar trends, and are used to demonstrate and explain some significant aspects of microwave-enhanced combustion. Both simulation and experimental studies are performed close to lean blow off conditions. In the simulations, the flame is gradually subjected to increasing reduced electric field strengths, resulting in a wider flame that stabilizes nearer to the burner nozzle. Experiments are performed at two equivalence ratios, where the leaner case absorbs up to more than 5% of the total flame power. Data from experiments reveal trends similar to simulated results with increased microwave absorption.
  •  
2.
  • Fureby, C., et al. (författare)
  • Investigations of microwave stimulation of turbulent flames with implications to gas turbine combustors
  • 2017
  • Ingår i: AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting. - Reston, Virginia : American Institute of Aeronautics and Astronautics. - 9781624104473
  • Konferensbidrag (refereegranskat)abstract
    • Efficient and clean production of electrical energy and mechanical (shaft) energy for use in industrial and domestic applications, surface- and ground transportation and aero-propulsion is currently of significant general concern. Fossil fuels are mainly used for transportation and aero-propulsion, but also for power generation. Combustion of fossil fuels typically give rise to undesired emissions such as unburned hydrocarbons, carbon dioxide, carbon monoxide, soot and nitrogen oxides. The most widespread approach to minimize these is to apply various lean-burn technologies, and sometimes also dilute the fuel with hydrogen. Although efficient in reducing emissions, lean-burn often results in combustion instabilities and igniteon issues, and thus become challenging itself. Another desired aspect of today’s engines is to increase the fuel flexibility. One possible technique that may be useful for circumventing these issues is plasma-assisted combustion, i.e. to supply a small amount of electric energy to the flame to stimulate the chemical kinetics. Although not new, this approach has not yet been fully explored, partly because of it’s complexity, and partly because of apparent sufficiency. Recently, however, several research studies of this area have emerged. This paper attempts to provide a brief summary of microwave-assisted combustion, in which microwaves are utilized to supply the electrical energy to the flame, and to demonstrate that this method is useful to enhance flame stabilization, delay lean blow-off, and to increase combustion efficiency. The main effect of microwaves (or electrical energy) is to enhance the chemical kinetics, resulting in increased reactivity and laminar and turbulent flame speeds. Here we will demonstrate that this will improve the performance of gas turbine combustors.
  •  
3.
  • Larsson, A., et al. (författare)
  • Skeletal Methane-Air Reaction Mechanism for Large Eddy Simulation of Turbulent Microwave-Assisted Combustion
  • 2017
  • Ingår i: Energy and Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 31:2, s. 1904-1926
  • Tidskriftsartikel (refereegranskat)abstract
    • Irradiating a flame via microwave radiation is a plasma-assisted combustion (PAC) technology that can be used to modify the combustion chemical kinetics in order to improve flame stability and to delay lean blow-out. One practical implication is that combustion engines may be able to operate with leaner fuel mixtures and have an improved fuel flexibility capability including biofuels. Furthermore, this technology may assist in reducing thermoacoustic instabilities, which is a phenomenon that may severely damage the engine and increase NOX production. To further understand microwave-assisted combustion, a skeletal kinetic reaction mechanism for methane-air combustion is developed and presented. The mechanism is detailed enough to take into account relevant features, but sufficiently small to be implemented in large eddy simulations (LES) of turbulent combustion. The mechanism consists of a proposed skeletal methane-air reaction mechanism accompanied by subsets for ozone, singlet oxygen, chemionization, and electron impact reactions. The baseline skeletal methane-air mechanism contains 17 species and 42 reactions, and it predicts the ignition delay time, flame temperature, flame speed, major species, and most minor species well, in addition to the extinction strain, compared to the detailed GRI 3.0 reaction mechanism. The amended skeletal reaction mechanism consists of 27 species and 80 reactions and is developed for a reduced electric field E/N below the critical field strength (of ∼125 Td) for the formation of a microwave breakdown plasma. Both laminar and turbulent flame simulation studies are carried out with the proposed skeletal reaction mechanism. The turbulent flame studies consist of propagating planar flames in homogeneous isotropic turbulence in the reaction sheets and the flamelets in eddies regimes, and a turbulent low-swirl flame. A comparison with experimental data is performed for a turbulent low-swirl flame. The results suggest that we can influence both laminar and turbulent flames by nonthermal plasmas, based on microwave irradiation. The laminar flame speed increases more than the turbulent flame speed, but the radical pool created by the microwave irradiation significantly increases the lean blow-out limits of the turbulent flame, thus making it less vulnerable to thermoacoustic combustion oscillations. Apart from the experimental results from low-swirl flame presented here, experimental data for validation of the simulated trends are scarce, and conclusions build largely on simulation results. Analysis of chemical kinetics from simulations of laminar flames and LES on turbulent flames reveal that singlet oxygen molecule is of key importance for the increased reactivity, accompanied by production of radicals such as O and OH.
  •  
4.
  • Sand, U., et al. (författare)
  • Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log
  • 2008
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 85, s. 1208-1224
  • Tidskriftsartikel (refereegranskat)abstract
    • The numerical simulation of the pyrolysis process of a dry and wet birch wood log in a cylindrical heating chamber is preformed. The model includes the flow inside and outside the porous wood log and accounts for convective, conductive and radiative heat transfer. A two-step pyrolysis reaction scheme is used to model the conversion from wood to tar. gas and char. The results of the simulations compare well with the authors experimental data which are presented in terms of radial temperature distribution and mass reduction, for both dry and wet cases. Our transient simulations provide us with the detailed flow field inside and outside the wood log. It clearly shows not only the existence but also the structure of the Pyrolysis gas plumes leaving the wood. These plumes have only been visualised experimentally by few authors [Brackmann C et al. Optical and mass spectroscopy study of the pyrolysis gas of wood particles. Appl Spectros 2003:57(2):216-22, [12]] without any quantitative Measurements and the present investigation gives a realistic estimation that we presently use to evaluate its impact on the heat and mass transfer, and on the momentum balance and the particle dispersion in a near future work. The gas plumes have a maximum velocity magnitude ranging between 0.1 and 0.2 m s(-1) and vanish when all the wood gas is produced. It is shown that increasing the convective flow around the wood log do not significantly modify the pyrolysis gas plume structure and seems to have small effect on the overall heating and the pyrolysis process which are mainly controlled by the thermal radiation from the hot surrounding walls.
  •  
5.
  • Andersson, Mike, et al. (författare)
  • The characteristics and utility of SiC-FE gas sensors for control of combustion in domestic heating systems [MISFET sensors]
  • 2004
  • Ingår i: Proceedings of IEEE Sensors, 2004.. - 0780386922 ; , s. 1157-1160
  • Konferensbidrag (refereegranskat)abstract
    • The possible utility of MISiCFET gas sensors in the application of combustion control in small-scale boilers has been tested and compared to commercially available resistive-type MOS sensors. The results suggest that by using the signals from one or more MISiCFET sensors, together with the measured temperature of the furnace, it seems possible to provide a rough picture of the state of combustion applicable to a control scheme in order to reduce emissions and increase the power to fuel economy.
  •  
6.
  • Ehn, Andreas, et al. (författare)
  • Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations
  • 2015
  • Ingår i: Proceedings of the Combustion Institute. - : Elsevier BV. - 1540-7489. ; 35:3, s. 3487-3495
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract In plasma-assisted combustion, electric energy is added to the flame where the electric energy will be transferred to kinetic energy of the free electrons that, in turn, will modify the combustion chemical kinetics. In order to increase the understanding of this complex process, the influence of one of the products of the altered chemical kinetics, ozone (O3), has been isolated and studied. This paper reports on studies using a low-swirl methane (CH4) air flame at lean conditions with different concentrations of O3 enrichment. The experimental flame diagnostics include Planar Laser Induced Fluorescence (PLIF) imaging of hydroxyl (OH) and formaldehyde (CH2O). The experiments are also modeled using Large Eddy Simulations (LES) with a reaction model based on a skeletal CH4-air reaction mechanism combined with an O3 sub-mechanism to include the presence of O3 in the flame. This reaction mechanism is based on fundamental considerations including reactions between O3 and all other species involved. The experiments reveal an increase in CH2O in the low-swirl flame as small amounts of O3 is supplied to the CH4-air stream upstream of the flame. This increase is well predicted by the LES computations and the relative radical concentration shift is in good agreement with experimental data. Simulations also reveal that the O3 enrichment increase the laminar flame speed, su, with ∼10% and the extinction strain-rate, Ïext, with ∼20%, for 0.57% (by volume) O3. The increase in Ïext enables the O3 seeded flame to burn under more turbulent conditions than would be possible without O3 enrichment. Sensitivity analysis indicates that the increase in Ïext due to O3 enrichment is primarily due to the accelerated chain-branching reactions H 2 + O â OH + H , H 2 O + O â OH + OH and H + O 2 â OH + O . Furthermore, the increase in CH2O observed in both experiments and simulations suggest a significant acceleration of the chain-propagation reaction CH 3 + O â CH 2 O + H .
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Lantz, Andreas, et al. (författare)
  • Investigation of ozone stimulated combustion in the SGT-800 burner at atmospheric conditions
  • 2016
  • Ingår i: Combustion, Fuels and Emissions. - 9780791849750 ; 4A-2016
  • Konferensbidrag (refereegranskat)abstract
    • The effect of ozone (O3) in a turbulent, swirl-stabilized natural gas/air flame was experimentally investigated at atmospheric pressure conditions using planar laser-induced fluorescence imaging of formaldehyde (CH2O PLIF) and dynamic pressure monitoring. The experiment was performed using a dry low emission (DLE) gas turbine burner used in both SGT-700 and SGT-800 industrial gas turbines from Siemens. The burner was mounted in an atmospheric combustion test rig at Siemens with optical access in the flame region. CH2O PLIF imaging was carried out for four different seeding gas compositions and seeding injection channel configurations. Two seeding injection-channels were located around the burner tip while the other two were located along the center axis of the burner at different distances upstream the burner outlet. Four different seeding gas compositions were used: nitrogen (N2), oxygen (O2) and two ozone/oxygen (O3/O2) mixtures with different O3 concentration. The results show that the O3 clearly affects the combustion chemistry. The natural gas/air mixture is preheated before combustion which is shown to kick-start the cold combustion chemistry where O3 is highly involved. The CH2O PLIF signal increases with O3 seeded into the flame which indicates that the pre-combustion activity increases and that the cold chemistry starts to develop further upstream. The small increase of the pressure drop over the burner shows that the flame moves upstream when O3 is seeded into the flame, which confirms the increase in pre-combustion activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy