SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larhammar Martin 1985 ) "

Sökning: WFRF:(Larhammar Martin 1985 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Enjin, Anders, et al. (författare)
  • Developmental disruption of recurrent inhibitory feedback results in compensatory adaptation in the Renshaw cell-motor neuron circuit
  • 2017
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 37:23, s. 5634-5647
  • Tidskriftsartikel (refereegranskat)abstract
    • When activating muscles, motor neurons in the spinal cord also activate Renshaw cells, which provide recurrent inhibitory feedback to the motor neurons. The tight coupling with motor neurons suggests that Renshaw cells have an integral role in movement, a role that is yet to be elucidated. Here we used the selective expression of the nicotinic cholinergic receptor α2 (Chrna2) in mice to genetically target the vesicular inhibitory amino acid transporter (VIAAT) in Renshaw cells. Loss of VIAAT from Chrna2Cre-expressing Renshaw cells did not impact any aspect of drug-induced fictive locomotion in the neonatal mouse or change gait, motor coordination, or grip strength in adult mice of both sexes. However, motor neurons from neonatal mice lacking VIAAT in Renshaw cells received spontaneous inhibitory synaptic input with a reduced frequency, showed lower input resistance, and had an increased number of proprioceptive glutamatergic and calbindin-labeled putative Renshaw cell synapses on their soma and proximal dendrites. Concomitantly, Renshaw cells developed with increased excitability and a normal number of cholinergic motor neuron synapses, indicating a compensatory mechanism within the recurrent inhibitory feedback circuit. Our data suggest an integral role for Renshaw cell signaling in shaping the excitability and synaptic input to motor neurons.
  •  
2.
  •  
3.
  • Larhammar, Martin, 1985- (författare)
  • Neuronal Networks of Movement : Slc10a4 as a Modulator & Dmrt3 as a Gait-keeper
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nerve cells are organized into complex networks that comprise the building blocks of our nervous system. Neurons communicate by transmitting messenger molecules released from synaptic vesicles. Alterations in neuronal circuitry and synaptic signaling contribute to a wide range of neurological conditions, often with consequences for movement. Intrinsic neuronal networks in the spinal cord serve to coordinate vital rhythmic motor functions. In spite of extensive efforts to address the organization of these neural circuits, much remains to be revealed regarding the identity and function of specific interneuron cell types and how neuromodulation tune network activity. In this thesis, two novel genes initially identified as markers for spinal neuronal populations were investigated: Slc10a4 and Dmrt3.The orphan transporter SLC10A4 was found to be expressed on synaptic vesicles of the cholinergic system, including motor neurons, as well as in the monoaminergic system, including dopaminergic, serotonergic and noradrenergic nuclei. Thus, it constitutes a novel molecular denominator shared by these classic neuromodulatory systems. SLC10A4 was found to influence vesicular transport of dopamine and affect neuronal release and reuptake efficiency in the striatum. Mice lacking Slc10a4 displayed impaired monoamine homeostasis and were hypersensitive to the drugs amphetamine and tranylcypromine. These findings demonstrate that SLC10A4 is capable of modulating the modulatory systems of the brain with potential clinical relevance for neurological and mental disorders.The transcription factor encoded by Dmrt3 was found to be expressed in a population of inhibitory commissural interneurons originating from the dorsal interneuron 6 (dI6) domain in the spinal cord. In parallel, a genome-wide association study revealed that a non-sense mutation in horse DMRT3 is permissive for the ability to perform pace among other alternate gaits. Further analysis of Dmrt3 null mutant mice showed that Dmrt3 has a central role for spinal neuronal network development with consequences for locomotor behavior. The dI6 class has been suggested to take part in motor circuits but remains one of the least studied classes due to lack of molecular markers. To further investigate the Dmrt3-derived neurons, and the dI6 population in general, a Dmrt3Cre mouse line was generated which allowed for characterization on the molecular, cellular and  behavioral level. It was found that Dmrt3 neurons synapse onto motor neurons, receive extensive synaptic inputs from various neuronal sources and are rhythmically active during fictive locomotion. Furthermore, silencing of Dmrt3 neurons in Dmrt3Cre;Viaatlx/lx mice led to impaired motor coordination and alterations in gait, together demonstrating the importance of this neuronal population in the control of movement.
  •  
4.
  • Larhammar, Martin, 1985-, et al. (författare)
  • SLC10A4 Is a Vesicular Amine-Associated Transporter Modulating Dopamine Homeostasis
  • 2015
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 77:6, s. 526-536
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis.MethodsWe used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine-regulated behaviors.ResultsWe show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice overexpressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine.ConclusionsOur results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.
  •  
5.
  • Perry, Sharn, et al. (författare)
  • Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits
  • 2019
  • Ingår i: Journal of Neuroscience. - : SOC NEUROSCIENCE. - 0270-6474 .- 1529-2401. ; 39:10, s. 1771-1782
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal networks within the spinal cord, collectively known as the central pattern generator (CPG), coordinate rhythmic movements underlying locomotion. The transcription factor doublesex and mab-3-related transcription factor 3 (DMRT3) is involved in the differentiation of the dorsal interneuron 6 class of spinal cord interneurons. In horses, a non-sense mutation in the Dmrt3 gene has major effects on gaiting ability, whereas mice lacking the Dmrt3 gene display impaired locomotor activity. Although the Dmrt3 gene is necessary for normal spinal network formation and function in mice, a direct role for Dmrt3-derived neurons in locomotor-related activities has not been demonstrated. Here we present the characteristics of the Dmrt3-derived spinal cord interneurons. Using transgenic mice of both sexes, we characterized interneurons labeled by their expression of Cre driven by the endogenous Dmrt3 promoter. We used molecular, retrograde tracing and electrophysiological techniques to examine the anatomical, morphological, and electrical properties of the Dmrt3-Cre neurons. We demonstrate that inhibitory Dmrt3-Cre neurons receive extensive synaptic inputs, innervate surrounding CPG neurons, intrinsically regulate CPG neuron's electrical activity, and are rhythmically active during fictive locomotion, bursting at frequencies independent to the ventral root output. The present study provides novel insights on the character of spinal Dmrt3-derived neurons, data demonstrating that these neurons participate in locomotor coordination.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy