SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsen Anders Foller 1984) "

Sökning: WFRF:(Larsen Anders Foller 1984)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dumat, Blaise, 1984, et al. (författare)
  • Second-Generation Fluorescent Quadracyclic Adenine Analogues: Environment-Responsive Probes with Enhanced Brightness
  • 2015
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 21:10, s. 4039-4048
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescent base analogues comprise a group of increasingly important molecules for the investigation of nucleic acid structure, dynamics, and interactions with other molecules. Herein, we report on the quantum chemical calculation aided design, synthesis, and characterization of four new putative quadracyclic adenine analogues. The compounds were efficiently synthesized from a common intermediate through a two-step pathway with the Suzuki-Miyaura coupling as the key step. Two of the compounds, qAN1 and qAN4, display brightnesses (εΦF) of 1700 and 2300, respectively, in water and behave as wavelength-ratiometric pH probes under acidic conditions. The other two, qAN2 and qAN3, display lower brightnesses but exhibit polarity-sensitive dual-band emissions that could prove useful to investigate DNA structural changes induced by DNA-protein or -drug interactions. The four qANs are very promising microenvironment-sensitive fluorescent adenine analogues that display considerable brightness for such compounds. Polarity and pH probes: 2-Aminopurine has long been the standard for fluorescent base analogues. Four new fluorescent probes suitable for the replacement of adenine in nucleic acids are presented. Based on their high structural similarity to their parent compound, quadracyclic adenine, they have the potential to be excellent A analogues. Their improved photophysical properties also suggest that they could be significantly brighter than 2-aminopurine inside nucleic acid systems (see figure; ΦF: fluorescence quantum yield).
  •  
2.
  • Larsen, Anders Foller, 1984, et al. (författare)
  • Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (epsilon Phi(F) = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy