SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsen Jes K) "

Sökning: WFRF:(Larsen Jes K)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Igalson, M., et al. (författare)
  • Excitation spectra of defect levels derived from photoinduced current transient spectroscopy - a tool for studying deep levels in Cu(In,Ga)Se2 compounds
  • 2017
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 633:SI, s. 227-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy required for the optical excitation of carriers onto defect levels is a parameter that compliments thermal activation energy and helps to understand the electronic properties of defects under study. Here a modification of the photoinduced current transient spectroscopy (PICTS) based on phase-sensitive detection is proposed which makes possible to measure the excitation spectra of defect levels. The representative results of the excitation spectra of the epitaxial CuGaSe2 and polycrystalline Cu(In,Ga)Se2 thin films are presented. They illustrate the usefulness of the method as a tool for studying defect properties by providing data that supplement information derived from standard PICTS spectroscopy.
  •  
2.
  •  
3.
  •  
4.
  • Aboulfadl, Hisham, 1986, et al. (författare)
  • Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells - Insight from Theory and Experiment
  • 2021
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 13:6, s. 7188-7199
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver alloying of Cu(In,Ga)Se2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to ∼60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to ∼20 ppm for films without Ag and up to ∼200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.
  •  
5.
  • Aboulfadl, Hisham, et al. (författare)
  • Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells
  • 2019
  • Ingår i: Microscopy and Microanalysis. - : CAMBRIDGE UNIV PRESS. - 1435-8115 .- 1431-9276. ; 25:2, s. 532-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface sulfurization of Cu(In,Ga)Se 2 (CIGSe) absorbers is a commonly applied technique to improve the conversion efficiency of the corresponding solar cells, via increasing the bandgap towards the heterojunction. However, the resulting device performance is understood to be highly dependent on the thermodynamic stability of the chalcogenide structure at the upper region of the absorber. The present investigation provides a high-resolution chemical analysis, using energy dispersive X-ray spectrometry and laser-pulsed atom probe tomography, to determine the sulfur incorporation and chemical re-distribution in the absorber material. The post-sulfurization treatment was performed by exposing the CIGSe surface to elemental sulfur vapor for 20 min at 500°C. Two distinct sulfur-rich phases were found at the surface of the absorber exhibiting a layered structure showing In-rich and Ga-rich zones, respectively. Furthermore, sulfur atoms were found to segregate at the absorber grain boundaries showing concentrations up to ∼7 at% with traces of diffusion outwards into the grain interior.
  •  
6.
  • Assar, Alireza, et al. (författare)
  • Gettering in PolySi/SiOx Passivating Contacts Enables Si-Based Tandem Solar Cells with High Thermal and Contamination Resilience
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:12, s. 14342-14358
  • Tidskriftsartikel (refereegranskat)abstract
    • Multijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However, for direct monolithic integration on c-Si, only a restricted number of top and bottom cell architectures are compatible, due to either epitaxy or high-temperature constraints, where the interface between subcells is subject to a trade-off between transmittance, electrical interconnection, and bottom cell degradation. Using polySi/SiOx passivating contacts for Si, this degradation can be largely circumvented by tuning the polySi/SiOx stacks to promote gettering of contaminants admitted into the Si bottom cell during the top cell synthesis. Applying this concept to the low-cost top cell chalcogenides Cu2ZnSnS4 (CZTS), CuGaSe2 (CGSe), and AgInGaSe2 (AIGSe), fabricated under harsh S or Se atmospheres above 550 degrees C, we show that increasing the heavily doped polySi layer thickness from 40 to up to 400 nm prevents a reduction in Si carrier lifetime by 1 order of magnitude, with final lifetimes above 500 mu s uniformly across areas up to 20 cm(2). In all cases, the increased resilience was correlated with a 99.9% reduction in contaminant concentration in the c-Si bulk, provided by the thick polySi layer, which acts as a buried gettering layer in the tandem structure without compromising the Si passivation quality. The Si resilience decreased as AIGSe > CGSe > CZTS, in accordance with the measured Cu contamination profiles and higher annealing temperatures. An efficiency of up to 7% was achieved for a CZTS/Si tandem, where the Si bottom cell is no longer the limiting factor.
  •  
7.
  • Englund, Sven, et al. (författare)
  • Characterization of TiN back contact interlayers with varied thickness for Cu2ZnSn(S,Se)4 thin film solar cells
  • 2017
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 639, s. 91-97
  • Tidskriftsartikel (refereegranskat)abstract
    • TiN thin films have previously been used as intermediate barrier layers on Mo back contacts in CZTS(e) solar cells to suppress excessive reaction of the Mo in the annealing step. In this work, TiN films with various thickness (20, 50 and 200 nm) were prepared with reactive DC magnetron sputtering on Mo/SLG substrates and annealed, without CZTS(e) layers, in either S or Se atmospheres. The as-deposited references and the annealed samples were characterized with X-ray Photoelectron Spectroscopy, X-ray Diffraction, Time-of-Flight-Elastic Recoil Detection Analysis, Time-of-Flight-Medium-Energy Ion Scattering, Scanning Electron Microscopy and Scanning Transmission Electron Microscopy – Electron Energy Loss Spectroscopy. It was found that the as-deposited TiN layers below 50 nm show discontinuities, which could be related to the surface roughness of the Mo. Upon annealing, TiN layers dramatically reduced the formation of MoS(e)2, but did not prevent the sulfurization or selenization of Mo. The MoS(e)2 had formed near the discontinuities, both below and above the TiN layers. Another unexpected finding was that the thicker TiN layer increased the amount of Na diffused to the surface after anneal, and we suggest that this effect is related to the Na affinity of the TiN layers and the MoS(e)2 thickness.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy