SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Jan Åke Docent) "

Sökning: WFRF:(Larsson Jan Åke Docent)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abidin, Aysajan (författare)
  • Weaknesses of Authentication in Quantum Cryptography and Strongly Universal Hash Functions
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Authentication is an indispensable part of Quantum Cryptography, which is an unconditionally secure key distribution technique based on the laws of nature. Without proper authentication, Quantum Cryptography is vulnerable to “man-in-the-middle” attacks. Therefore, to guarantee unconditional security of any Quantum Cryptographic protocols, the authentication used must also be unconditionally secure. The standard in Quantum Cryptography is to use theWegman-Carter authentication, which is unconditionally secure and is based on the idea of universal hashing.In this thesis, we first investigate properties of a Strongly Universal hash function family to facilitate understanding the properties of (classical) authentication used in Quantum Cryptography. Then, we study vulnerabilities of a recently proposed authentication protocol intended to rule out a "man-in-the-middle" attack on Quantum Cryptography. Here, we point out that the proposed authentication primitive is not secure when used in a generic Quantum Cryptographic protocol. Lastly, we estimate the lifetime of authentication using encrypted tags when the encryption key is partially known. Under simplifying assumptions, we derive that the lifetime is linearly dependent on the length of the authentication key. Experimental results that support the theoretical results are also presented.
  •  
2.
  •  
3.
  • Almlöf, Jonas (författare)
  • Quantum error correction
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Quantum error correction is the art of protecting quantum states from the detrimental influence from the environment. To master this art, one must understand how the system interacts with the environment and gives rise to a full set of quantum phenomena, many of which have no correspondence in classical information theory. Such phenomena include decoherence, an effect that in general destroys superpositions of pure states as a consequence of entanglement with the environment. But decoherence can also be understood as “information leakage”, i.e., when knowledge of an encoded code block is transferred to the environment. In this event, the block’s information or entanglement content is typically lost.In a typical scenario, however, not all types of destructive events are likely to occur, but only those allowed by the information carrier, the type of interaction with the environment, and how the environment “picks up” information of the error events. These characteristics can be incorporated into a code, i.e., a channel-adapted quantum error-correcting code.Often, it is assumed that the environment’s ability to distinguish between error events is small, and I will denote such environments “memory-less”. But this assumption is not always valid, since the ability to distinguish error events is related to the temperature of the environment, and in the particular case of information coded onto photons, kBTR «ℏω typically holds, and one must then assume that the environment has a “memory”. In the thesis I describe a short quantum error-correction code adapted for photons interacting with a “cold” reservoir, i.e., a reservoir which continuously probes what error occurred in the coded state.I also study other types of environments, and show how to distill meaningful figures of merit from codes adapted for these channels, as it turns out that resource-based figures reflecting both information and entanglement can be calculated exactly for a well-studied class of channels: the Pauli channels. Starting from these resource-based figures, I establish the notion of efficiency and quality and show that there will be a trade-off between efficiency and quality for short codes. Finally I show how to incorporate, into these calculations, the choices one has to make when handling quantum states that have been detected as incorrect, but where no prospect of correcting them exists, i.e., so-called detection errors.
  •  
4.
  • Almlöf, Jonas, 1973- (författare)
  • Quantum error correction
  • 2012
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis intends to familiarise the reader with quantum error correction, and also show some relations to the well known concept of information - and the lesser known quantum information. Quantum information describes how information can be carried by quantum states, and how interaction with other systems give rise to a full set of quantum phenomena, many of which have no correspondence in classical information theory. These phenomena include decoherence, as a consequence of entanglement. Decoherence can also be understood as "information leakage", i.e., knowledge of an event is transferred to the reservoir - an effect that in general destroys superpositions of pure states.It is possible to protect quantum states (e.g., qubits) from interaction with the environment - but not by amplification or duplication, due to the "no-cloning" theorem. Instead, this is done using coding, non-demolition measurements, and recovery operations. In a typical scenario, however, not all types of destructive events are likely to occur, but only those allowed by the information carrier, the type of interaction with the environment, and how the environment "picks up" information of the error events. These characteristics can be incorporated into a code, i.e., a channel-adapted quantum error-correcting code. Often, it is assumed that the environment's ability to distinguish between error events is small, and I will denote such environments "memory-less". This assumption is not always valid, since the ability to distinguish error events is related to the \emph{temperature} of the environment, and in the particular case of information coded onto photons,  typically holds, and one must then assume that the environment has a "memory". In this thesis, I describe a short quantum error-correcting code (QECC), adapted for photons interacting with a cold environment, i.e., this code protects from an environment that continuously records which error occurred in the coded quantum state.Also, it is of interest to compare the performance of different QECCs - But which yardstick should one use? We compare two such figures of merit, namely the quantum mutual information and the quantum fidelity, and show that they can not, in general, be simultaneously maximised in an error correcting procedure. To show this, we have used a five-qubit perfect code, but assumed a channel that only cause bit-flip errors. It appears that quantum mutual information is the better suited yardstick of the two, however more tedious to calculate than quantum fidelity - which is more commonly used.
  •  
5.
  • Jogenfors, Jonathan, 1988- (författare)
  • A Classical-Light Attack on Energy-Time Entangled Quantum Key Distribution, and Countermeasures
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Quantum key distribution (QKD) is an application of quantum mechanics that allowstwo parties to communicate with perfect secrecy. Traditional QKD uses polarization of individual photons, but the development of energy-time entanglement could lead to QKD protocols robust against environmental effects. The security proofs of energy-time entangled QKD rely on a violation of the Bell inequality to certify the system as secure. This thesis shows that the Bell violation can be faked in energy-time entangled QKD protocols that involve a postselection step, such as Franson-based setups. Using pulsed and phase-modulated classical light, it is possible to circumvent the Bell test which allows for a local hidden-variable model to give the same predictions as the quantum-mechanical description. We show that this attack works experimentally and also how energy-time-entangled systems can be strengthened to avoid our attack.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy