SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Simon PhD) "

Sökning: WFRF:(Larsson Simon PhD)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wessling, Albin, 1993-, et al. (författare)
  • A statistical bonded particle model study on the effects of rock heterogeneity and cement strength on dynamic rock fracture
  • 2024
  • Ingår i: Computational Particle Mechanics. - : Springer Nature. - 2196-4378 .- 2196-4386. ; 11:3, s. 1313-1327
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical modelling and simulation can be used to gain insight about rock excavation processes such as rock drilling. Since rock materials are heterogeneous by nature due to varying mechanical and geometrical properties of constituent minerals, laboratory observations exhibit a certain degree of unpredictability, e.g. with regard to measured strength and crack propagation. In this work, a recently published heterogeneous bonded particle model is further developed and used to investigate dynamic rock fracture in a Brazilian disc test. The rock heterogeneities are introduced in two steps—a geometrical heterogeneity due to statistically distributed grain sizes and shapes, and a mechanical heterogeneity by distributing mechanical properties using three Weibull distributions. The first distribution is used for assigning average bond properties of the grains, the second one for the intragranular bond properties and the third one for the bond properties of the intergranular cementing. The model is calibrated for Kuru black diorite using previously published experimental data from high-deformation rate tests of Brazilian discs in a split-Hopkinson pressure bar device, where high-speed imaging was used to detect initiations of cracks and their growth. A parametric study is conducted on the Weibull heterogeneity index of the average bond properties and the grain cement strength and evaluated in terms of crack initiation and propagation, indirect tensile stress, strain and strain rate. The results show that this modelling approach is able to reproduce key phenomena of the dynamic rock fracture, such as stochastic crack initiation and propagation, as well as the magnitude and variations of measured quantities. Furthermore, the cement strength is found to be a key parameter for crack propagation path and time, overloading magnitudes and indirect tensile strain rate.
  •  
2.
  • Wessling, Albin, 1993- (författare)
  • Heterogeneous Bonded Particle Modelling of Rock Fracture
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The dynamic fracture process of rock materials is of importance for several industries, such as the rock drilling process in geothermal and mining applications. Gaining knowledge and understanding of dynamic rock fracture through numerical simulations can enhance the rock drilling process, for example by optimising the drill bit geometry and drilling parameters. In order for a numerical simulation of rock fracture processes to be accurate, the model needs to be able to capture key aspects of rock materials. Generally, rock materials are said to be britle and heterogeneous. The heterogeneity is partly due to the varying mechanical properties of constituent minerals, and partly due to the varying sizes, shapes, and directions of these minerals. The main objective of this thesis is the development of a heterogeneous rock model to be used for dynamic drilling processes. In the first article in this thesis, a heterogeneous bonded particle model is developed. Here, the heterogeneity is introduced in two steps – a geometrical heterogeneity using statistically distributed grain shapes and sizes, and a mechanical heterogeneity by distributing bonding parameters using a Weibull distribution. The model is applied to the quasi-static Brazilian disc test and a parametric study is conducted on the heterogeneity index and intergranular cement strength. The results show that crack initiation and propagation are highly dependent on the degree of heterogeneity. In general, the model was found to replicate typical phenomena associated with britle heterogeneous materials, for example unpredictability of macroscopic strength and crack properties. In the second paper of this thesis, an extensive dynamic experimental characterization of two igneous rock materials – Kuru grey granite and Kuru black diorite – is conducted. Here, a Split-Hopkinson configuration together with high-speed photography and digital image correlation is utilized to obtain the compressive and indirect tensile behavior of the rock materials. By using a significantly high frame rate of 671,000 fps in the digital image correlation analysis, it is shown that the point in time for crack initiation in the Brazilian disc can be estimated. From this, it is shown that the main splititng crack in the Brazilian disc occurs at 70 and 77 % for the two rock materials. In the third paper of this thesis, the heterogeneous bonded particle model from the first paper is further developed and calibrated using the dynamic experimental data for Kuru black diorite from the second paper. In contrast to the first paper, where one Weibull distribution is used, three Weibull distributions are used here. The first distribution is used for assigning average bonding parameters of the grains, the second for the intragranular bonding parameters and the third for the bonding parameters of the intergranular cementing. First, a homogeneous bonded particle model, i.e., without heterogeneous grains and no statistical distribution of bonding parameters, is calibrated so that the average experimental results are replicated. Then, using this homogeneously calibrated model, the heterogeneous model is activated, and a parametric study is conducted on the heterogeneity index for the average grain properties and the intergranular cement strength. The results show that this modelling approach is able to capture key phenomena of dynamic rock fracture, such as stochastic crack initiation and propagation, as well as peak stress, overloading, strain rate and crack propagation time. In the fourth paper, the proposed heterogeneous bonded particle model from previous papers is validated using a laboratory rock drilling experiment. The rock material is dynamically characterized using the methodology from the second paper and the grain structure is obtained from a scan of the rock surface. Three of the constituent minerals are represented in the model in terms of their size, occurrence, and mechanical properties. Furthermore, the model is calibrated in both compression and tension, where both the peak stress values and fracture behavior are captured. The model is then used to simulate the laboratory rock drilling experiment, where crater depth, load and rock fragment sizes are compared with the experiments. The results show that the simulation is able to capture peak load values and the rock fragment sizes are similar to that of the experiments.
  •  
3.
  • Bahaloohoreh, Hassan, 1983- (författare)
  • Experiments and simulations on the mechanics of ice and snow
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this study, experiments and simulations were conducted to investigate ice and snow. The ice sintering force as a function of temperature, pressing force (contact load), contact duration, and particle size during the primary stage of sintering was formulated using experimental methods along with an approximate, semi-analytic, close-form solution. It was shown that the ice sintering force increases nearly linear with increasing external pressing force but best approximated as a power law for dependency on both contact duration and particle size. Moreover, the exponent of the power law for size dependence is around the value predicted by general sintering theory. The temperature dependence of the sintering force is highly nonlinear and follows the Arrhenius equation. It was observed that at temperatures closer to the melting point, a liquid bridge is observed upon these paration of the contacted ice particles. The ratio of ultimate tensile strength of ice to the axial stress concentration factor in tension is found as an important factor in determining the sintering force, and a value of nearly 1.1 MPa was estimated to best catch the sintering force of ice in different conditions. From the temperature dependency, the activation energy is calculated to be around 41.4 kJ/mol, which is close to the previously reported value. Also, the results for the sintering force suggest that smaller particles are “stickier” than larger particles. Moreover, cavitation and surface cracking is observed during the formation of the ice particles and these can be one of the sources for the variations observed in the measured ice sintering force values.The presence of a capillary bridge in contact between an ice particle and a "smooth" (or rough) Aluminum surface at relative humidity around 50% and temperatures below the melting point was experimentally demonstrated. Experiments were conducted under controlled temperature conditions and the mechanical instability of the bridge upon separation of the ice particle from the Aluminum surface with a constant speed was considered. It was observed that a liquid bridge with a more pronounced volume at temperatures near the melting point is formed. It was showen that the separation distance is proportional to the cube root of the volume of the bridge. The volume of the liquidbridge is used to estimate the thickness of the liquid layer on the ice particle and the estimated value was shown to be within the range reported in the literature. The thickness of the liquid layer decreases from nearly 56 nm at -1.7◦C to 0.2 nm at -12.7◦C. The dependence can be approximated with a power law, proportional to (TM − T)−β, where β < 2.6. We further observe that for a rough surface, the capillary bridge formation in the considered experimental conditions vanishes.The Discrete Element Method (DEM) was employed to simulate the filling behavior of dry snow. Snow as a heterogeneous, hot material which is constituted from spherical ice particles which can form bonds. The bonding behavior of ice particles is important in determining the macroscopic behavior of snow. The bond diameter of ice-ice contacts as a function of time, compressive load, and strain rate is used and a DEM for dry snow was developed and programmed in MATLAB. A beam element with implemented damage model was used in the simulation. The simulated parameters were macroscopic angle of repose, packing density, and surface conditions as a function of temperature and fillingrate. The DEM results were able to verify the existing published experimental data. The simulation results showed that angle of repose of snow decreased with decreasing the temperature, the surface became irregular due to particles rotation and re-arrangement for lower falling speeds of particles, and density increased with depth of deposition.
  •  
4.
  • Rodriguez Prieto, Juan Manuel, et al. (författare)
  • Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study
  • 2023
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we apply the Particle Finite Element Method (PFEM) and Smoothed Particle Hydrodynamics (SPH) to simulate the orthogonal cutting chip formation of two workpiece materials, i.e., AISI 1045 steel and Ti6Al4V titanium alloy. A modified Johnson–Cook constitutive model is used to model the plastic behavior of the two workpiece materials. No damage or strain softening is included in the model. The friction between the workpiece and the tool is modeled following Coulomb’s law with a temperature-dependent coefficient. The accuracy of PFEM and SPH in predicting thermomechanical loads at various cutting speeds and depths against the experimental data are compared. The results show that both numerical methods can predict the rake face temperature of AISI 1045 with errors less than 34%. For Ti6Al4V, however, the temperature prediction errors are significantly higher than those of the steel alloy. Errors in force prediction were in the range of 10% to 76% for both methods, which compare very well with those reported in the literature. This investigation infers that the Ti6Al4V behavior under machining conditions is difficult to model on the cutting scale irrespective of the choice of numerical method.
  •  
5.
  • Hammarberg, Samuel, 1988-, et al. (författare)
  • Calibration of orthotropic plasticity- and damage models for micro-sandwich materials
  • 2022
  • Ingår i: SN Applied Sciences. - : Springer Nature. - 2523-3963 .- 2523-3971. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sandwich structures are commonly used to increase bending-stiffness without significantly increasing weight. In particular, micro-sandwich materials have been developed with the automotive industry in mind, being thin and formable. In the present work, it is investigated if micro-sandwich materials may be modeled using commercially available material models, accounting for both elasto-plasticity and fracture. A methodology for calibration of both the constitutive- and the damage model of micro-sandwich materials is presented. To validate the models, an experimental T-peel test is performed on the micro-sandwich material and compared with the numerical models. The models are found to be in agreement with the experimental data, being able to recreate the force response as well as the fracture of the micro-sandwich core.
  •  
6.
  •  
7.
  • Pålsson, Bertil I., 1951-, et al. (författare)
  • An attempt to a full energy balance for a pilot-scale stirred media mill
  • 2022
  • Ingår i: IMPC Asia-Pacific 2022 Conference Proceedings. - : The Australian Institute of Mining and Metallurgy. ; , s. 266-273
  • Konferensbidrag (refereegranskat)abstract
    • The question of effective energy utilisation in grinding mills is not new. There are several conflicting arguments about tumbling mills, whether the efficiency is around one per cent or maybe ten per cent, or even much lower. The energy not used is assumed to be lost as heating of the pulp, the grinding mill body, the charge, generation of shockwaves and vibrations, etc. Stirred media mills on the other hand are generally considered to have better energy utilisation, but their energy efficiency is still not that clear. To shed some light on this a pilot-scale, wet stirred media mill was investigated over a range of operating conditions. The wet stirred media mill is a Drais PMH 5 TEX pearl mill fitted with an electric motor at 11 kW. It has been investigated over a range of operating conditions to try to balance the dissemination of the input energy in forms of the net grinding energy, mechanical energy losses, and the heating transferred to the pulp, the mill, the charge, and the cooling water. It is found that approximately 20 – 40 per cent of the input energy accounts for the grinding process. Also, that the difference between gross and net input electrical energy is mainly disseminated as heating of the pulp and cooling water. Mechanical energy losses appear to be much smaller than the heating effects. The use of a dispersant seems to mainly influence the heating effect.
  •  
8.
  • Rodriguez, J. M., et al. (författare)
  • Implicit or explicit time integration schemes in the PFEM modeling of metal cutting processes
  • 2022
  • Ingår i: Computational Particle Mechanics. - : Springer. - 2196-4378 .- 2196-4386. ; 9:4, s. 709-733
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the development of an explicit/implicit particle finite element method (PFEM) for the 2D modeling of metal cutting processes. The purpose is to study the efficiency of implicit and explicit time integration schemes in terms of precision, accuracy and computing time. The formulation for implicit and explicit time marching schemes is developed, and a detailed study on the explicit solution steps is presented. The PFEM remeshing procedures for insertion and removal of particles have been improved to model the multiple scales of time and/or space of the solution. The detection and treatment of the rigid tool contact are presented for both, implicit and explicit schemes. The performance of explicit/implicit integration is studied with a set of different two-dimensional orthogonal cutting tests of AISI 4340 steel at cutting speeds ranging from 1 m/s up to 30 m/s. It was shown that if the correct selection of the time integration scheme is made, the computing time can decrease up to 40 times. It allows us to affirm that the computing time of the PFEM simulations can be excessive due to the used time marching scheme independently of the meshing process. As a practical result, a set of recommendations to select the time integration schemes for a given cutting speed are given. This is intended to minimize one of the negative constraints pointed out by the industry when using metal cutting simulators.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy