SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lascu Ana) "

Sökning: WFRF:(Lascu Ana)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bețiu, Alina M., et al. (författare)
  • Mitochondrial Effects of Common Cardiovascular Medications : The Good, the Bad and the Mixed
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:21
  • Forskningsöversikt (refereegranskat)abstract
    • Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
  •  
2.
  • Jablonski, Piotr, et al. (författare)
  • Scalable and sustainable processing of intracellular polyhydroxyalkanoates with biobased solvents
  • 2023
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 11:51, s. 17990-18000
  • Tidskriftsartikel (refereegranskat)abstract
    • The replacement of fossil-based plastics with biobased and biodegradable alternatives has become an important research challenge in recent years, aiming to eliminate the negative environmental impact of persistent plastics in nature. In this report, design of experiments was successfully exploited to develop an efficient and sustainable method for extracting intracellular PHA from Photobacterium ganghwense C2.2 using dihydrolevoglucosenone (Cyrene) and ethanol as biobased solvents obtainable from sustainable sources. The extraction conditions were studied and optimized against the yield and molecular weight. The temperature range for the extraction was scouted by using differential scanning calorimetry, while size exclusion chromatography coupled to refractive index and multiangle light scattering detectors was used to assess the molecular weights of the extracted polymers. The examined ranges in the model were, respectively, 1.6–8.4% (w/v) of lyophilized cells content per 10 mL of solvent, 3–17 min extraction time, and temperatures from 116 to 144 °C. Time and temperature strongly affected the extraction yields and molecular weights of the obtained polymers while the concentration of bacterial biomass only effected the molecular weight. Several quadratic and interaction coefficients were significant in the well-fit partial least-squares regression models (R2 > 0.8, Q2 > 0.6) indicating that nonlinear effects and interacting parameter contributed to the optimization targets. The optimized extraction should be performed at 130 °C for 15 min with 2% loading of bacterial biomass. The predicted yield and molecular weight of the polymer matched the values obtained from the real experiment under the optimized conditions. The method setup provided similar yield and higher molecular weight in much shorter time compared to overnight Soxhlet extraction with CHCl3. The clean 1H nuclear magnetic resonance spectra of polymers extracted from bacteria indicate that high purity materials can be obtained using an optimized extraction scheme. Additionally, the Cyrene solvent could be recycled at least five times and still performed the extraction equally well as the fresh solvent. Finally, the current method demonstrated a high potential for scalability using a HP4750 stirred filtration cell. Three different filtration conditions were tested, achieving up to 97.4% recovery at 80 °C using a 0.3 μm glass fiber membrane, with a flux of 312.5 LMH.
  •  
3.
  • Lascu, Irina, et al. (författare)
  • Revealing the phenotypic and genomic background for pha production from rapeseed-biodiesel crude glycerol using photobacterium ganghwense C2.2
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 23:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyhydroxyalkanoates (PHA) are promising biodegradable and biocompatible bioplastics, and extensive knowledge of the employed bacterial strain’s metabolic capabilities is necessary in choosing economically feasible production conditions. This study aimed to create an in-depth view of the utilization of Photobacterium ganghwense C2.2 for PHA production by linking a wide array of characterization methods: metabolic pathway annotation from the strain’s complete genome, high-throughput phenotypic tests, and biomass analyses through plate-based assays and flask and bioreactor cultivations. We confirmed, in PHA production conditions, urea catabolization, fatty acid degradation and synthesis, and high pH variation and osmotic stress tolerance. With urea as a nitrogen source, pure and rapeseed-biodiesel crude glycerol were analyzed comparatively as carbon sources for fermentation at 20 °C. Flask cultivations yielded 2.2 g/L and 2 g/L PHA at 120 h, respectively, with molecular weights of 428,629 g/mol and 81,515 g/mol. Bioreactor batch cultivation doubled biomass accumulation (10 g/L and 13.2 g/L) in 48 h, with a PHA productivity of 0.133 g/(L·h) and 0.05 g/(L·h). Thus, phenotypic and genomic analyses determined the successful use of Photobacterium ganghwense C2.2 for PHA production using urea and crude glycerol and 20 g/L NaCl, without pH adjustment, providing the basis for a viable fermentation process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy