SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lassiter DG) "

Sökning: WFRF:(Lassiter DG)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lane, SC, et al. (författare)
  • Effects of sleeping with reduced carbohydrate availability on acute training responses
  • 2015
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 1522-1601 .- 8750-7587. ; 119:6, s. 643-655
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined the effects of “periodized nutrition” on skeletal muscle and whole body responses to a bout of prolonged exercise the following morning. Seven cyclists completed two trials receiving isoenergetic diets differing in the timing of ingestion: they consumed either 8 g/kg body mass (BM) of carbohydrate (CHO) before undertaking an evening session of high-intensity training (HIT) and slept without eating (FASTED), or consumed 4 g/kg BM of CHO before HIT, then 4 g/kg BM of CHO before sleeping (FED). The next morning subjects completed 2 h of cycling (120SS) while overnight fasted. Muscle biopsies were taken on day 1 (D1) before and 2 h after HIT and on day 2 (D2) pre-, post-, and 4 h after 120SS. Muscle [glycogen] was higher in FED at all times post-HIT ( P < 0.001). The cycling bouts increased PGC1α mRNA and PDK4 mRNA ( P < 0.01) in both trials, with PDK4 mRNA being elevated to a greater extent in FASTED ( P < 0.05). Resting phosphorylation of AMPKThr172, p38MAPKThr180/Tyr182, and p-ACCSer79 (D2) was greater in FASTED ( P < 0.05). Fat oxidation during 120SS was higher in FASTED ( P = 0.01), coinciding with increases in ACCSer79 and CPT1 as well as mRNA expression of CD36 and FABP3 ( P < 0.05). Methylation on the gene promoter for COX4I1 and FABP3 increased 4 h after 120SS in both trials, whereas methylation of the PPARδ promoter increased only in FASTED. We provide evidence for shifts in DNA methylation that correspond with inverse changes in transcription for metabolically adaptive genes, although delaying postexercise feeding failed to augment markers of mitochondrial biogenesis.
  •  
3.
  •  
4.
  •  
5.
  • Mudry, JM, et al. (författare)
  • Insulin and Glucose Alter Death-Associated Protein Kinase 3 (DAPK3) DNA Methylation in Human Skeletal Muscle
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:3, s. 651-662
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is altered by environmental factors. We hypothesized that DNA methylation is altered in skeletal muscle in response to either insulin or glucose exposure. We performed a genome-wide DNA methylation analysis in muscle from healthy men before and after insulin exposure. DNA methylation of selected genes was determined in muscle from healthy men and men with type 2 diabetes before and after a glucose tolerance test. Insulin altered DNA methylation in the 3′ untranslated region of the calcium pump ATP2A3 gene. Insulin increased DNA methylation in the gene body of DAPK3, a gene involved in cell proliferation, apoptosis, and autophagy. DAPK3 methylation was reduced in patients with type 2 diabetes. Carbohydrate ingestion reduced DAPK3 DNA methylation in healthy men and men with type 2 diabetes, suggesting glucose may play a role. Supporting this, DAPK3 DNA methylation was inversely correlated with the 2-h glucose concentration. Whereas glucose incorporation to glycogen was unaltered by small interfering RNA against DAPK3, palmitate oxidation was increased. In conclusion, insulin and glucose exposure acutely alter the DNA methylation profile of skeletal muscle, indicating that DNA methylation constitutes a rapidly adaptive epigenetic mark. Furthermore, insulin and glucose modulate DAPK3 DNA methylation in a reciprocal manner, suggesting a feedback loop in the control of the epigenome.
  •  
6.
  • Nylen, C, et al. (författare)
  • IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1
  • 2018
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 315:5, s. E995-E1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine monophosphate-activated protein kinase (AMPK) controls glucose and lipid metabolism and modulates inflammatory responses to maintain metabolic and inflammatory homeostasis during low cellular energy levels. The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) interferes with inflammatory pathways in skeletal muscle, but the mechanisms are undefined. We hypothesized that AMPK activation reduces cytokine mRNA levels by blocking transcription through one or several transcription factors. Three skeletal muscle models were used to study AMPK effects on cytokine mRNA: human skeletal muscle strips obtained from healthy men incubated in vitro, primary human muscle cells, and rat L6 cells. In all three skeletal muscle systems, AICAR acutely reduced cytokine mRNA levels. In L6 myotubes treated with the transcriptional blocker actinomycin D, AICAR addition did not further reduce Il6 or leukemia inhibitory factor ( Lif) mRNA, suggesting that AICAR modulates cytokine expression through regulating transcription rather than mRNA stability. A cross-species bioinformatic approach identified novel transcription factors that may regulate LIF and IL6 mRNA. The involvement of these transcription factors was studied after targeted gene-silencing by siRNA. siRNA silencing of the transcription factors nuclear transcription factor Y subunit c ( Nfyc), specificity protein 1 ( Sp1), and zinc finger and BTB domain containing 14 ( Zbtb14), or AMPK α1/α2 subunits, increased constitutive levels of Il6 and Lif. Our results identify novel candidates in the regulation of skeletal muscle cytokine expression and identify AMPK, Nfyc, Sp1, and Zbtb14 as novel regulators of immunometabolic signals from skeletal muscle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy