SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Latronico Tiziana) "

Search: WFRF:(Latronico Tiziana)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rullo, Mariagrazia, et al. (author)
  • Probing Fluorinated Motifs onto Dual AChE-MAO B Inhibitors : Rational Design, Synthesis, Biological Evaluation, and Early-ADME Studies
  • 2022
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 65:5, s. 3962-3977
  • Journal article (peer-reviewed)abstract
    • Bioisosteric H/F or CH2OH/CF2H replacement was introduced in coumarin derivatives previously characterized as dual AChE-MAO B inhibitors to probe the effects on both inhibitory potency and drug-likeness. Along with in vitro screening, we investigated early-ADME parameters related to solubility and lipophilicity (Sol7.4, CHI7.4, log D7.4), oral bioavailability and central nervous system (CNS) penetration (PAMPA-HDM and PAMPA-blood–brain barrier (BBB) assays, Caco-2 bidirectional transport study), and metabolic liability (half-lives and clearance in microsomes, inhibition of CYP3A4). Both specific and nonspecific tissue toxicities were determined in SH-SY5Y and HepG2 lines, respectively. Compound 15 bearing a −CF2H motif emerged as a water-soluble, orally bioavailable CNS-permeant potent inhibitor of both human AChE (IC50 = 550 nM) and MAO B (IC50 = 8.2 nM, B/A selectivity > 1200). Moreover, 15 behaved as a safe and metabolically stable neuroprotective agent, devoid of cytochrome liability.
  •  
2.
  • Rullo, Mariagrazia, et al. (author)
  • Bioisosteric replacement based on 1,2,4-oxadiazoles in the discovery of 1H-indazole-bearing neuroprotective MAO B inhibitors
  • 2023
  • In: European Journal of Medicinal Chemistry. - : Elsevier. - 0223-5234 .- 1768-3254. ; 255
  • Journal article (peer-reviewed)abstract
    • Following a hybridization strategy, a series of 5-substituted-1H-indazoles were designed and evaluated in vitro as inhibitors of human monoamine oxidase (hMAO) A and B. Among structural modifications, the bioisostere-based introduction of 1,2,4-oxadiazole ring returned the most potent and selective human MAO B inhibitor (compound 20, IC50 = 52 nM, SI > 192). The most promising inhibitors were studied in cell-based neuroprotection models of SH-SY5Y and astrocytes line against H2O2. Moreover, preliminary drug-like features (aqueous solubility at pH 7.4; hydrolytic stability at acidic and neutral pH) were assessed for selected 1,2,4-oxadiazoles and compared to amide analogues through RP-HPLC methods. Molecular docking simulations highlighted the crucial role of molecular flexibility in providing a better shape complementarity for compound 20 within MAO B enzymatic cleft than rigid analogue 18. Enzymatic kinetics analysis along with thermal stability curves (Tm shift = +2.9 °C) provided clues of a tight-binding mechanism for hMAO B inhibition by 20.
  •  
3.
  • Soffitta, Paolo, et al. (author)
  • XIPE : the X-ray imaging polarimetry explorer
  • 2013
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 36:3, s. 523-567
  • Journal article (peer-reviewed)abstract
    • X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 10(5) s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin x 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mu s. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view