SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lau Joey) "

Sökning: WFRF:(Lau Joey)

  • Resultat 1-10 av 71
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Niclas, 1976-, et al. (författare)
  • Gastric bypass reduces symptoms and hormonal responses to hypoglycemia
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:9, s. 2667-2675
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastric bypass (GBP) surgery, one of the most common bariatric procedures, induces weight loss and metabolic effects. The mechanisms are not fully understood, but reduced food intake and effects on gastrointestinal hormones are thought to contribute. We recently observed that GBP patients have lowered glucose levels and frequent asymptomatic hypoglycemic episodes. Here, we subjected patients before and after undergoing GBP surgery to hypoglycemia and examined symptoms and hormonal and autonomic nerve responses. Twelve obese patients without diabetes (8 women, mean age 43.1 years [SD 10.8] and BMI 40.6 kg/m(2) [SD 3.1]) were examined before and 23 weeks (range 19-25) after GBP surgery with hyperinsulinemic-hypoglycemic clamp (stepwise to plasma glucose 2.7 mmol/L). The mean change in Edinburgh Hypoglycemia Score during clamp was attenuated from 10.7 (6.4) before surgery to 5.2 (4.9) after surgery. There were also marked postsurgery reductions in levels of glucagon, cortisol, and catecholamine and the sympathetic nerve responses to hypoglycemia. In addition, growth hormone displayed a delayed response but to a higher peak level. Levels of glucagon-like peptide 1 and gastric inhibitory polypeptide rose during hypoglycemia but rose less postsurgery compared with presurgery. Thus, GBP surgery causes a resetting of glucose homeostasis, which reduces symptoms and neurohormonal responses to hypoglycemia. Further studies should address the underlying mechanisms as well as their impact on the overall metabolic effects of GBP surgery.
  •  
2.
  • Andersson, Arne, et al. (författare)
  • Operating in an era of impact factor mania
  • 2015
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 120:2, s. 124-131
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Andersson, Arne, 1943-, et al. (författare)
  • Scholarly publishing threatened?
  • 2016
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 121:4, s. 205-206
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Aresh, Bejan, 1984-, et al. (författare)
  • Spinal Cord Interneurons Expressing the Gastrin-Releasing Peptide Receptor Convey Itch Through VGLUT2-Mediated Signaling
  • 2017
  • Ingår i: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 0304-3959 .- 1872-6623. ; 158:5, s. 945-961
  • Tidskriftsartikel (refereegranskat)abstract
    • Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin-releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in laminae II-IV. Application of the specific agonist gastrin-releasing peptide induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA, and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox; Grpr-Cre mice) displayed less spontaneous itch and attenuated responses to both histaminergic and nonhistaminergic agents. We could also show that application of the itch-inducing peptide, natriuretic polypeptide B, induces calcium influx in a subpopulation of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.
  •  
5.
  • Balboa, Diego, et al. (författare)
  • Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells.
  • 2022
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 40:7, s. 1042-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.
  •  
6.
  • Barbu, Andreea, et al. (författare)
  • Blood flow in endogenous and transplanted pancreatic islets in anesthetized rats : Effects of lactate and pyruvate
  • 2012
  • Ingår i: Pancreas. - 0885-3177 .- 1536-4828. ; 41:8, s. 1263-1271
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The objective of this study was to evaluate the effects of exogenously administered lactate and pyruvate on blood perfusion in endogenous and transplanted islets. METHODS: Anesthetized Wistar-Furth rats were given lactate or pyruvate intravenously, and regional blood perfusion was studied 3 or 30 minutes later with a microsphere technique. Separate rats received a 30-minute infusion of pyruvate or lactate into the portal vein before blood flow measurements. We also administered these substances to islet-implanted rats 4 weeks after transplantation and measured graft blood flow with laser Doppler flowmetry. The expression of monocarboxylate transporter 1 and lactate dehydrogenase A was analyzed. RESULTS: The expression of monocarboxylate transporter 1 and lactate dehydrogenase A was markedly up-regulated in transplanted as compared with endogenous islets. Administration of pyruvate, but not lactate, increased mesenteric blood flow after 3 minutes. Pyruvate decreased mesenteric blood flow after 30 minutes, whereas lactate decreased only islet blood flow. These responses were absent in transplanted animals. A continuous intraportal infusion of lactate or pyruvate increased selectively islet blood flow but did not affect blood perfusion of transplanted islets. CONCLUSIONS: Lactate and pyruvate affect islet blood flow through effects mediated by interactions between the liver and the nervous system. Such a response can help adjust the release of islet hormones during excess substrate concentrations.
  •  
7.
  • Boersma, Greta J., et al. (författare)
  • Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and may Contribute to the Development of Type 2 Diabetes: A Combined PET/MR Study
  • 2018
  • Ingår i: Hormone and Metabolic Research. - : Georg Thieme Verlag KG. - 0018-5043 .- 1439-4286. ; 50:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body 18F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues. MRglu in skeletal muscle, SAT, visceral adipose tissue (VAT), and liver was significantly reduced in T2D subjects and correlated positively with M-values (r = 0.884, r = 0.574, r = 0.707 and r = 0.403, respectively). Brain MRglu was significantly higher in T2D and prediabetes subjects and had a significant inverse correlation with M-values (r = -0.616). Myocardial MRglu did not differ between groups and did not correlate with the M-values. A multivariate model including skeletal muscle, brain and VAT MRglu best predicted the M-values (adjusted r2 = 0.85). In addition, SAT MRglu correlated with SAT glucose uptake ex vivo (r = 0.491). In different stages of the development of T2D, glucose uptake during hyperinsulinemia is elevated in the brain in parallel with an impairment in peripheral organs. Impaired glucose uptake in skeletal muscle and VAT together with elevated glucose uptake in brain were independently associated with whole-body insulin resistance, and these tissue-specific alterations may contribute to T2D development.
  •  
8.
  •  
9.
  •  
10.
  • Brboric, Anja, et al. (författare)
  • Characterization of neural crest-derived stem cells isolated from human bone marrow for improvement of transplanted islet function.
  • 2019
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 124:4, s. 228-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Murine boundary cap-derived neural crest stem cells (NCSCs) are capable of enhancing islet function by stimulating beta cell proliferation as well as increasing the neural and vascular density in the islets both in vitro and in vivo. This study aimed to isolate NCSC-like cells from human bone marrow.Methods: CD271 magnetic cell separation and culture techniques were used to purify a NCSC-enriched population of human bone marrow. Analyses of the CD271+ and CD271- fractions in terms of protein expression were performed, and the capacity of the CD271+ bone marrow cells to form 3-dimensional spheres when grown under non-adherent conditions was also investigated. Moreover, the NCSC characteristics of the CD271+ cells were evaluated by their ability to migrate toward human islets as well as human islet-like cell clusters (ICC) derived from pluripotent stem cells.Results: The CD271+ bone marrow population fulfilled the criterion of being multipotent stem cells, having the potential to differentiate into glial cells, neurons as well as myofibroblasts in vitro. They had the capacity to form 3-dimensional spheres as well as an ability to migrate toward human islets, further supporting their NCSC identity. Additionally, we demonstrated similar migration features toward stem cell-derived ICC.Conclusion: The results support the NCSC identity of the CD271-enriched human bone marrow population. It remains to investigate whether the human bone marrow-derived NCSCs have the ability to improve transplantation efficacy of not only human islets but stem cell-derived ICC as well.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 71
Typ av publikation
tidskriftsartikel (55)
annan publikation (7)
doktorsavhandling (4)
forskningsöversikt (4)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (49)
övrigt vetenskapligt/konstnärligt (22)
Författare/redaktör
Carlsson, Per-Ola (36)
Lau, Joey, 1979- (22)
Vasylovska, Svitlana (12)
Eriksson, Jan W. (8)
Pereira, Maria J., 1 ... (7)
Kamble, Prasad G. (6)
visa fler...
Quach, My (6)
Sundbom, Magnus (5)
Sandberg, Monica (5)
Espes, Daniel, 1985- (5)
Katsogiannos, Petros (5)
Eriksson, Olof (4)
Jansson, Leif (4)
Sandler, Stellan (4)
Börjesson, Joey Lau (4)
Lau Börjesson, Joey, ... (4)
Ahlström, Håkan, 195 ... (3)
Lau Börjesson, Joey (3)
Berggren, Per-Olof (3)
Otonkoski, Timo (3)
Johansson, Emil (3)
Kullberg, Joel, 1979 ... (3)
Welsh, Nils (3)
Andersson, Arne (3)
Saarimäki-Vire, Jonn ... (3)
Boersma, Greta J. (3)
Skrtic, S. (3)
Korsgren, Olle (2)
Skrtic, Stanko, 1970 (2)
Zhang, Bo (2)
Eriksson, Jan (2)
Christoffersson, Gus ... (2)
Johansson, Åsa (2)
Kvist, Jouni (2)
Persson, Jonas (2)
Lubberink, Mark (2)
Löfblom, John (2)
Svensson, Johanna (2)
Panagiotou, G (2)
Kampf, Caroline (2)
Dimberg, Anna (2)
Carlsson, Carina (2)
Mattsson, Göran (2)
Smits, Anja (2)
Nyqvist, Daniel (2)
Singh, Kailash (2)
Barbu, Andreea (2)
Luo, Zhengkang (2)
Balboa, Diego (2)
Eriksson, Jonas (2)
visa färre...
Lärosäte
Uppsala universitet (71)
Karolinska Institutet (5)
Göteborgs universitet (3)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (69)
Svenska (1)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (44)
Naturvetenskap (2)
Samhällsvetenskap (2)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy