SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lauritsen Jeppe V.) "

Sökning: WFRF:(Lauritsen Jeppe V.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beinik, Igor, et al. (författare)
  • Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal adhesion on metal oxides is strongly controlled by the oxide surface structure and composition, but lack of control over the surface conditions often limits the possibilities to exploit this in opto- and micro-electronics applications and heterogeneous catalysis where nanostructural control is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface- directed migration of subsurface defects affects the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies that defect concentrations in the bulk are an important, and possibly controllable, parameter for the metal-on-oxide growth.
  •  
2.
  • Hellström, Matti, et al. (författare)
  • Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - 2469-9950. ; 94:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of hydrogen and other defects in the stabilization of polar oxide interfaces is a matter of significant fundamental and practical interest. Using experimental (scanning tunneling microscopy, x-ray photoelectron spectroscopy) and theoretical (density functional theory) surface science techniques, we find that the polar Zn-terminated ZnO(0001) surface becomes excessively Zn deficient during high-temperature annealing (780 K) in ultrahigh vacuum (UHV). The Zn vacancies align themselves into rows parallel to the [10 (1) over bar 10] direction, and the remaining surface Zn ions alternately occupy wurtzite (hcp) and zinc-blende (fcc) lattice positions, giving a characteristic "striped" c(root 12 x root 12) R30 degrees surface morphology with three types of rows: wurtzite Zn, zinc-blende Zn, and Zn vacancies. Interstitial H plays a central role in such a reconstruction, as it helps to compensate the excessive Zn deficiency. We propose a model in which hydrogen occupies positions in half of the vacancy rows to form hydroxide ions that can participate in hydrogen bonds in the O subsurface layer as a result of the mixed wurtzite/zinc-blende stacking.
  •  
3.
  • Holt, Ann Julie U., et al. (författare)
  • Electronic properties of single-layer CoO2/Au(111)
  • 2021
  • Ingår i: Current Opinion in Chemical Engineering. - : IOP Publishing. - 2211-3398. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report direct measurements via angle-resolved photoemission spectroscopy (ARPES) of the electronic dispersion of single-layer (SL) CoO2. The Fermi contour consists of a large hole pocket centered at the (Gamma) over bar point. To interpret the ARPES results, we use density functional theory (DFT) in combination with the multi-orbital Gutzwiller Approximation (DFT+GA), basing our calculations on crystalline structure parameters derived from x-ray photoelectron diffraction and low-energy electron diffraction. Our calculations are in good agreement with the measured dispersion. We conclude that the material is a moderately correlated metal. We also discuss substrate effects, and the influence of hydroxylation on the CoO2 SL electronic structure.
  •  
4.
  • Jensen, Thomas N., et al. (författare)
  • Correlation between stoichiometry and surface structure of the polar MgAl2O4(100) surface as a function of annealing temperature
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:8, s. 5795-5804
  • Tidskriftsartikel (refereegranskat)abstract
    • The correlation between surface structure, stoichiometry and atomic occupancy of the polar MgAl2O4(100) surface has been studied with an interplay of noncontact atomic force microscopy, X-ray photoelectron spectroscopy and surface X-ray diffraction under ultrahigh vacuum conditions. The Al/Mg ratio is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 1073-1273 K. The Al excess is explained by the observed surface structure, where the formation of nanometer-sized pits and elongated patches with Al terminated step edges contribute to stabilizing the structure by compensating surface polarity. Surface X-ray diffraction reveals a reduced occupancy in the top two surface layers for both Mg, Al, and O and, moreover, vacancies are preferably located in octahedral sites, indicating that Al and Mg ions interchange sites. The excess of Al and high concentration of octahedral vacancies, very interestingly, indicates that the top few surface layers of the MgAl2O4(100) adopts a surface structure similar to that of a spinel-like transition Al2O3 film. However, after annealing at a high temperature of 1473 K, the Al/Mg ratio restores to its initial value, the occupancy of all elements increases, and the surface transforms into a well-defined structure with large flat terraces and straight step edges, indicating a restoration of the surface stoichiometry. It is proposed that the tetrahedral vacancies at these high temperatures are filled by Mg from the bulk, due to the increased mobility at high annealing temperatures.
  •  
5.
  • Koust, Stig, et al. (författare)
  • Coverage-dependent oxidation and reduction of vanadium supported on anatase TiO2(1 0 1)
  • 2018
  • Ingår i: Journal of Catalysis. - : Elsevier BV. - 0021-9517. ; 360, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Elsevier Inc. Using a multi-technical approach, we studied the oxidation of anatase TiO 2 (1 0 1)-supported vanadium (V) clusters at room temperature. We found by ex situ XPS that the highest oxidation state is +4 at sub-monolayer coverage regardless of the O 2 pressure, and STM studies revealed that the initial oxidation proceeds through oxygen-induced disintegration of V clusters into monomeric VO 2 species. By contrast, for ∼2 monolayer V coverage, a partial oxidation to V 5+ is achieved. By in situ APXPS measurements, we found that V can be maintained in the V 5+ oxidation state irrespective of the coverage; however, in the sub-monolayer range, an O 2 pressure of at least ∼1 × 10 −5 mbar is needed. Our results suggest an enhanced reducibility of V in direct contact with the TiO 2 support compared to V in the 2nd layer, which is in line with the observed optimum V 2 O 5 loading in catalytic applications just slightly below a full monolayer.
  •  
6.
  • Majchrzak, Paulina, et al. (författare)
  • Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors
  • 2021
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.5 eV between our systems. The transient conduction band signals decay on a sub-50 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe a fast timescale on the order of 170 fs, followed by a slow dynamics for the conduction band decay in MoS2. These timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.
  •  
7.
  • Rasmussen, Morten K., et al. (författare)
  • Stable Cation Inversion at the MgAl2O4(100) Surface
  • 2011
  • Ingår i: Physical Review Letters. - 1079-7114. ; 107:3
  • Tidskriftsartikel (refereegranskat)abstract
    • From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.
  •  
8.
  • Rattigan, Eoghan, et al. (författare)
  • The cobalt oxidation state in preferential CO oxidation on CoOx/Pt(111) investigated by operando X-ray photoemission spectroscopy
  • 2022
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:16, s. 9236-9246
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of a reducible transition metal oxide and a noble metal such as Pt often leads to active low-temperature catalysts for the preferential oxidation of CO in excess H2 gas (PROX reaction). While CO oxidation has been investigated for such systems in model studies, the added influence of hydrogen gas, representative of PROX, remains less explored. Herein, we use ambient pressure scanning tunneling microscopy and ambient pressure X-ray photoelectron spectroscopy on a CoOx/Pt(111) planar model catalyst to analyze the active phase and the adsorbed species at the CoOx/Pt(111) interface under atmospheres of CO and O2 with a varying partial pressure of H2 gas. By following the evolution of the Co oxidation state as the catalyst is brought to a reaction temperature of above 150 °C, we determine that the active state is characterized by the transformation from planar CoO with Co in the 2+ state to a mixed Co2+/Co3+ phase at the temperature where CO2 production is first observed. Furthermore, our spectroscopy observations of the surface species suggest a reaction pathway for CO oxidation, proceeding from CO exclusively adsorbed on Co2+ sites reacting with the lattice O from the oxide. Under steady state CO oxidation conditions (CO/O2), the mixed oxide phase is replenished from oxygen incorporating into cobalt oxide nanoislands. In CO/O2/H2, however, the onset of the active Co2+/Co3+ phase formation is surprisingly sensitive to the H2 pressure, which we explain by the formation of several possible hydroxylated intermediate phases that expose both Co2+ and Co3+. This variation, however, has no influence on the temperature where CO oxidation is observed. Our study points to the general importance of a dynamic reducibility window of cobalt oxide, which is influenced by hydroxylation, and the bonding strength of CO to the reduced oxide phase as important parameters for the activity of the system.
  •  
9.
  • Walton, Alex S., et al. (författare)
  • Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 9:3, s. 2445-2453
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic "water splitting" reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect of gold contact are only understood on a rudimentary level, which at present prevents further exploration. We have synthesized a model system of flat, layered cobalt oxide nanoislands supported on a single crystal gold (111) substrate. By using a combination of atom-resolved scanning tunneling microscopy, X-ray photoelectron and absorption spectroscopies and density functional theory calculations, we provide a detailed analysis of the relationship between the atomic-scale structure of the nanoislands, Co oxidation states and substrate induced charge transfer effects in response to the synthesis oxygen pressure. We reveal that conversion from CO2+ to Co3+ can occur by a facile incorporation of oxygen at the interface between the nanoisland and gold, changing the islands from a Co-O bilayer to an O-Co-O trilayer. The O-Co-O trilayer islands have the structure of a single layer of beta-CoOOH, proposed to be the active phase for the OER, making this system a valuable model in understanding of the active sites for OER. The Co oxides adopt related island morphologies without significant structural reorganization, and our results directly demonstrate that nanosized Co oxide islands have a much higher structural flexibility than could be predicted from bulk properties. Furthermore, it is clear that the gold/nanoparticle interface has a profound effect on the structure of the nanoislands, suggesting a possible promotion mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy