SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lauro F.) "

Sökning: WFRF:(Lauro F.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Balieu, Romain, et al. (författare)
  • Damage at high strain rates in semi-crystalline polymers
  • 2015
  • Ingår i: International Journal of Impact Engineering. - : Elsevier BV. - 0734-743X .- 1879-3509. ; 76, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • A specific damage characterization method using Digital Image Correlation for semi-crystalline polymers is proposed for a wide range of strain rates. This damage measurement is an extension of the SEE method [16] which was developed to characterize the behaviour laws at constant strain rates of polymeric materials. This procedure is compared to the well-known damage characterization by loss of stiffness technique under quasi-static loading. In addition, an in-situ tensile test, carried out in a microtomograph, is used to observe the cavitation phenomenon in real time. The different ways used to evaluate the damage evolution are compared and the proposed technique is also suitable for measuring the ductile damage observed in semi-crystalline polymers under dynamic loading.
  •  
3.
  •  
4.
  • Parail, V., et al. (författare)
  • Integrated modelling of ITER reference scenarios
  • 2009
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 49:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The ITER Scenario Modelling Working Group (ISM WG) is organized within the European Task Force on Integrated Tokamak Modelling (ITM-TF). The main responsibility of the WG is to advance a pan-European approach to integrated predictive modelling of ITER plasmas with the emphasis on urgent issues, identified during the ITER Design Review. Three major topics are discussed, which are considered as urgent and where the WG has the best possible expertize. These are modelling of current profile control, modelling of density control and impurity control in ITER (the last two topics involve modelling of both core and SOL plasma). Different methods of heating and current drive are tested as controllers for the current profile tailoring during the current ramp-up in ITER. These include Ohmic, NBI, ECRH and LHCD methods. Simulation results elucidate the available operational margins and rank different methods according to their ability to meet different requirements. A range of ITER-relevant' plasmas from existing tokamaks were modelled. Simulations confirmed that the theory-based transport model, GLF23, reproduces the density profile reasonably well and can be used to assess ITER profiles with both pellet injection and gas puffing. In addition, simulations of the SOL plasma were launched using both H-mode and L-mode models for perpendicular transport within the edge barrier and in the SOL. Finally, an integrated approach was also used for the predictive modelling of impurity accumulation in ITER. This includes helium ash, extrinsic impurities (such as argon) and impurities coming from the wall (including tungsten). The relative importance of anomalous and neo-classical pinch contributions towards impurity penetration through the edge transport barrier and further accumulation in the core was assessed.
  •  
5.
  • Romanelli, M., et al. (författare)
  • JINTRAC: A system of codes for integrated simulation of Tokamak scenarios
  • 2014
  • Ingår i: Plasma and Fusion Research. - : Japan Society of Plasma Science and Nuclear Fusion Research. - 1880-6821. ; 9:SPECIALISSUE.2
  • Tidskriftsartikel (refereegranskat)abstract
    • Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding. © 2014 The Japan Society of Plasma Science and Nuclear Fusion Research.
  •  
6.
  •  
7.
  •  
8.
  • Balieu, Romain, et al. (författare)
  • Non-associated viscoplasticity coupled with an integral-type nonlocal damage model for mineral filled semi-crystalline polymers
  • 2014
  • Ingår i: Computers & structures. - : Elsevier BV. - 0045-7949 .- 1879-2243. ; 134, s. 18-31
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-associated viscoplastic model coupled with nonlocal damage under finite strain framework is developed to simulate the non-isochoric deformation and the damage process exhibiting strain-softening of a 20% mineral filled semi-crystalline polymer. The logarithmic spin tensor properties linking the Eulerian Hencky strain with the Cauchy stress is used thanks to hypoelasticity assuming the additive decomposition of the stretching into elastic and viscoplastic parts. The constitutive model with its nonlocal formulation is implemented in an efficient manner in a commercial implicit finite element code. The proposed model exhibits mesh-independent responses and is in agreement with strain evolution observed experimentally.
  •  
9.
  • Berto, Marcello, et al. (författare)
  • Biorecognition in Organic Field Effect Transistors Biosensors: The Role of the Density of States of the Organic Semiconductor
  • 2016
  • Ingår i: ANALYTICAL CHEMISTRY. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 88:24, s. 12330-12338
  • Tidskriftsartikel (refereegranskat)abstract
    • Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNF alpha at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNF alpha concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNF alpha concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNF alpha in human-plasma derived samples as an example for point-of-care application.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy