SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lavrikova P) "

Sökning: WFRF:(Lavrikova P)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lavrikova, M A, et al. (författare)
  • Amyloidogenic properties of the artificial protein albebetin and its biologically active derivatives. The role of electrostatic interactions in fibril formation.
  • 2006
  • Ingår i: Biochemistry (Moscow). - 0006-2979 .- 1608-3040. ; 71:3, s. 306-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The artificial protein albebetin (ABB) and its derivatives containing biologically active fragments of natural proteins form fibrils at physiological pH. The amyloid nature of the fibrils was confirmed by far UV circular dichroism spectra indicating for rich beta-structure, thioflavin T binding assays, and examination of the obtained polymers by atomic force microscopy. Fusing of short peptides--octapeptide of human alpha(2)-interferon (130-137) or hexapeptide HLDF-6 (41-46) of human leukemia differentiation factor--with the N-terminus of ABB led to increased amyloidogenicity of the protein: the rate of fibril formation increased and the morphology of fibrils became more complex. The presence of free hexapeptide HLDF-6 in the ABB solution had the same effect. Increasing ionic strength also activated the process of amyloid formation, but to less extent than did the peptides fused with ABB or added to the ABB solution. We suggest an important role of electrostatic interactions in formation of ABB fibrils. The foregoing ways (addition of salt or peptides) allow decrease in electrostatic repulsion between ABB molecules carrying large negative charge (-12) at neutral pH, thus promoting fibril formation.
  •  
3.
  • Morozova-Roche, Ludmilla, et al. (författare)
  • Fibrillation of Carrier Protein Albebetin and Its Biologically Active Constructs. Multiple Oligomeric Intermediates and Pathways
  • 2004
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 43:30, s. 9610-9619
  • Tidskriftsartikel (refereegranskat)abstract
    • We showed that the genetically engineered carrier-protein albebetin and its biologically active constructs with interferon-2 octapeptide LKEKKYSP or differentiation factor hexapeptide TGENHR are inherently highly amyloidogenic at physiological pH. The kinetics of fibrillation were monitored by thioflavine-T (ThT) binding and the morphological changes by atomic force microscopy. Fibrillation proceeds via multiple pathways and includes a hierarchy of amyloid structures ranging from oligomers to protofilaments and fibrils. Comparative height and volume microscopic measurements allowed us to identify two distinct types of oligomeric intermediates: pivotal oligomers ca. 1.2 nm in height comprised of 10-12 monomers and on-pathway amyloid-competent oligomers ca. 2 nm in height constituted of 26-30 molecules. The former assemble into chains and rings with "bead-on-string morphology", in which a "bead" corresponds to an individual oligomer. Once formed, the rings and chains remain in solution simultaneously with fibrils. The latter give rise to protofilaments and fibrils, and their formation is concomitant with an increasing level of ThT binding. The amyloid nature of filamentous structures was confirmed by a pronounced ThT and Congo red binding and -sheet-rich far-UV circular dichroism. We suggest that transformation of the pivotal oligomers into the amyloid-prone ones is a limiting stage in amyloid assembly. Peptides, either fused to albebetin or added into solution, and an increased ionic strength promote fibrillation of albebetin (net charge of -12) by counterbalancing critical electrostatic repulsions. This finding demonstrates that the fibrillation of newly designed polypeptide-based products can produce multimeric amyloid species with a potentially "new" functionality, raising questions about their safety.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy