SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lavvas Panayotis) "

Sökning: WFRF:(Lavvas Panayotis)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lavvas, Panayotis, et al. (författare)
  • Aerosol growth in Titan's ionosphere
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:8, s. 2729-2734
  • Tidskriftsartikel (refereegranskat)abstract
    • Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.
  •  
2.
  • Rodriguez, Sébastien, et al. (författare)
  • Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability : titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 911-973
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s. 
  •  
3.
  • Sagnieres, Luc B. M., et al. (författare)
  • Influence of local ionization on ionospheric densities in Titan's upper atmosphere
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:7, s. 5899-5921
  • Tidskriftsartikel (refereegranskat)abstract
    • Titan has the most chemically complex ionosphere of the solar system. The main sources of ions on the dayside are ionization by EUV solar radiation and on the nightside include ionization by precipitated electrons from Saturn's magnetosphere and transport of ions from the dayside, but many questions remain open. How well do models predict local ionization rates? How strongly do the ionization processes drive the ionospheric densities locally? To address these questions, we have carried out an analysis of ion densities from the Ion and Neutral Mass Spectrometer (INMS) from 16 close flybys of Titan's upper atmosphere. Using a simple chemical model applied to the INMS data set, we have calculated the ion production rates and local ionization frequencies associated with primary ions and . We find that on the dayside the solar energy deposition model overestimates the INMS-derived production rates by a factor of 2. On the nightside, however, the model driven by suprathermal electron intensities from the Cassini Plasma Spectrometer Electron Spectrometer sometimes agrees and other times underestimates the INMS-derived production rates by a factor of up to 2-3. We find that below 1200km, all ion number densities correlate with the local ionization frequency, although the correlation is significantly stronger for short-lived ions than long-lived ions. Furthermore, we find that, for a given N-2 local ionization frequency, has higher densities on the dayside than on the nightside. We explain that this is due to CH4 being more efficiently ionized by solar photons than by magnetospheric electrons for a given amount of N-2 ionization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy