SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laxman Navya) "

Sökning: WFRF:(Laxman Navya)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • El-Heliebi, Amin, et al. (författare)
  • In Situ Detection and Quantification of AR-V7, AR-FL, PSA, and KRAS Point Mutations in Circulating Tumor Cells
  • 2018
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:3, s. 536-546
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms.METHODS: We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wildtype (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients.RESULTS: In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts.CONCLUSIONS: Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices.
  •  
2.
  •  
3.
  • Laxman, Navya, et al. (författare)
  • Global miRNA expression and correlation with mRNA levels in primary human bone cells
  • 2015
  • Ingår i: RNA. - : Cold Spring Harbor Laboratory. - 1355-8382 .- 1469-9001. ; 21:8, s. 1433-1443
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA-mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA-mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, alpha 1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression.
  •  
4.
  • Laxman, Navya, et al. (författare)
  • miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)
  • 2017
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.
  •  
5.
  • Laxman, Navya (författare)
  • miRNA and Asymmetric siRNA : Small RNAs with Large Effects on Bone Metabolism
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • RNA interference (RNAi) is a post-transcriptional gene silencing process elicited by double-stranded RNA, such as micro-RNA (miRNA) and small interfering RNA (siRNA). They are 18-25 nucleotide long, small non-coding RNAs acting as critical regulators in eukaryotic genome expression. They play an important role in regulating a wide range of biological processes such as cell cycle control, differentiation, aging and apoptosis. However, their role in supporting skeletal development and bone homeostasis is still poorly understood.Osteoporotic fractures constitute a tremendous and growing problem in our ageing populations, with an annual incidence of approximately 60000 osteoporotic fractures in Sweden. Osteoporosis is referred as the “Silent epidemic” because bone loss is gradual and a basically symptomless development until a fracture occurs.Results presented in this thesis provide a novel insight into crucial roles of   miRNAs in regulating bone homeostasis. The initial aim for the thesis was to perform global miRNA expression profiling in human bone cells, and to correlate these levels to global mRNA levels. We identified and functionally characterized several miRNAs that were differentially expressed and acted in important bone signaling pathways such as the Wnt and BMP pathways. These miRNAs included hsa-miR-29b, hsa-miR-30c2 and hsa-miR-125b, which we found targeting genes highly relevant to bone metabolism e.g. COL1A1, SPARC, RUNX2, BGLAP and FRZB.Thereafter, the effect on the microRNAome upon external stimuli (e.g., Dexamethasone and Parathyroid hormone) was assessed by SOLiD sequencing. We observed a substantial difference in the expression of miRNAs between PTH and DEX treated cells. Understanding the changes in miRNAome in human bone cells under different conditions could provide new insight in bone remodeling, specifically differentiation and functional properties of osteoblasts.Based on these studies, we furthermore identified Dlx5 as potential common target of miR-203 and miR-320b and these miRNAs negatively regulate BMP-2-induced osteoblast differentiation.To activate the RNAi pathway, siRNA or miRNA molecules must be conveyed into the cytoplasm of target cells. Since challenges in cellular delivery of these small silencing RNA molecules so far have limited their clinical utility, we developed a new siRNA design that demonstrates a novel carrier-free cellular delivery. This development could potentially have a major impact in RNAi therapeutics.In conclusion, this thesis provides novel insight of miRNAs that play a major role in the regulation of bone remodeling and differentiation and functional properties of osteoblasts. Our findings may have diagnostic and/or therapeutic implications in disorders of bone metabolism.
  •  
6.
  • Laxman, Navya, et al. (författare)
  • Second generation sequencing of microRNA in Human Bone Cells treated with Parathyroid Hormone or Dexamethasone
  • 2016
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 84, s. 181-188
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the impact of treatment with parathyroid hormone (PTH) and dexamethasone (DEX) for 2 and 24 h by RNA sequencing of miRNAs in primary human bone (HOB) cells. A total of 207 million reads were obtained, and normalized absolute expression retrieved for 373 most abundant miRNAs. In naive control cells, 7 miRNAs were differentially expressed (FDR < 0.05) between the two time points. Ten miRNAs exhibited differential expression (FDR < 0.05) across two time points and treatments after adjusting for expression in controls and were selected for downstream analyses. Results show significant effects on miRNA expression when comparing PTH with DEX at 2 h with even more pronounced effects at 24 h. Interestingly, several miRNAs exhibiting differences in expression are predicted to target genes involved in bone metabolism e.g. miR-30c2, miR-203 and miR-205 targeting RUNX2, and miR-320 targeting beta-catenin (CTNNB1) mRNA expression. CTNNB1 and RUNX2 levels were decreased after DEX treatment and increased after PTH treatment. Our analysis also identified 2 putative novel miRNAs in PTH and DEX treated cells at 24 h. RNA sequencing showed that PTH and DEX treatment affect miRNA expression in HOB cells and that regulated miRNAs in turn are correlated with expression levels of key genes involved in bone metabolism.
  •  
7.
  • Lindahl, Katarina, et al. (författare)
  • Allele Dependent Silencing of Collagen Type I Using Small Interfering RNAs Targeting 3'UTR Indels : a Novel Therapeutic Approach in Osteogenesis Imperfecta
  • 2013
  • Ingår i: International Journal of Medical Sciences. - : Ivyspring International Publisher. - 1449-1907. ; 10:10, s. 1333-1343
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta, also known as "brittle bone disease", is a heterogeneous disorder of connective tissue generally caused by dominant mutations in the genes COL1A1 and COL1A2, encoding the α1 and α2 chains of type I (pro)collagen. Symptomatic patients are usually prescribed bisphosphonates, but this treatment is neither curative nor sufficient. A promising field is gene silencing through RNA interference. In this study small interfering RNAs (siRNAs) were designed to target each allele of 3'UTR insertion/deletion polymorphisms (indels) in COL1A1 (rs3840870) and COL1A2 (rs3917). For both indels, the frequency of heterozygous individuals was determined to be approximately 50% in Swedish cohorts of healthy controls as well as in patients with osteogenesis imperfecta. Cultures of primary human bone derived cells were transfected with siRNAs through magnet-assisted transfection. cDNA from transfected cells was sequenced in order to measure targeted allele/non-targeted allele ratios and the overall degree of silencing was assessed by quantitative PCR. Successful allele dependent silencing was observed, with promising results for siRNAs complementary to both the insertion and non-insertion harboring alleles. In COL1A1 cDNA the indel allele ratios were shifted from 1 to 0.09 and 0.19 for the insertion and non-insertion allele respectively while the equivalent resulting ratios for COL1A2 were 0.05 and 0.01. Reductions in mRNA abundance were also demonstrated; in cells treated with siRNAs targeting the COL1A1 alleles the average COL1A1 mRNA levels were reduced 65% and 78% compared to negative control levels and in cells treated with COL1A2 siRNAs the average COL1A2 mRNA levels were decreased 26% and 49% of those observed in the corresponding negative controls. In conclusion, allele dependent silencing of collagen type I utilizing 3'UTR indels common in the general population constitutes a promising mutation independent therapeutic approach for osteogenesis imperfecta.
  •  
8.
  • Strell, Carina, et al. (författare)
  • Placing RNA in context and space - methods for spatially resolved transcriptomics
  • 2019
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 286:8, s. 1468-1481
  • Forskningsöversikt (refereegranskat)abstract
    • Single-cell transcriptomics provides us with completely new insights into the molecular diversity of different cell types and the different states they can adopt. The technique generates inventories of cells that constitute the building blocks of multicellular organisms. However, since the method requires isolation of discrete cells, information about the original location within tissue is lost. Therefore, it is not possible to draw detailed cellular maps of tissue architecture and their positioning in relation to other cells. In order to better understand the cellular and tissue function of multicellular organisms, we need to map the cells within their physiological, morphological, and anatomical context and space. In this review, we will summarize and compare the different methods of in situ RNA analysis and the most recent developments leading to more comprehensive and highly multiplexed spatially resolved transcriptomic approaches. We will discuss their highlights and advantages as well as their limitations and challenges and give an outlook on promising future applications and directions both within basic research as well as clinical integration.
  •  
9.
  • Wang, Chuan, et al. (författare)
  • Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility
  • 2013
  • Ingår i: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 14:4, s. 217-222
  • Tidskriftsartikel (refereegranskat)abstract
    • The type I interferon system genes IKBKE and IFIH1 are associated with the risk of systemic lupus erythematosus (SLE). To identify the sequence variants that are able to account for the disease association, we resequenced the genes IKBKE and IFIH1. Eighty-six single-nucleotide variants (SNVs) with potentially functional effect or differences in allele frequencies between patients and controls determined by sequencing were further genotyped in 1140 SLE patients and 2060 controls. In addition, 108 imputed sequence variants in IKBKE and IFIH1 were included in the association analysis. Ten IKBKE SNVs and three IFIH1 SNVs were associated with SLE. The SNVs rs1539241 and rs12142086 tagged two independent association signals in IKBKE, and the haplotype carrying their risk alleles showed an odds ratio of 1.68 (P-value=1.0 × 10−5). The risk allele of rs12142086 affects the binding of splicing factor 1 in vitro and could thus influence its transcriptional regulatory function. Two independent association signals were also detected in IFIH1, which were tagged by a low-frequency SNV rs78456138 and a missense SNV rs3747517. Their joint effect is protective against SLE (odds ratio=0.56; P-value=6.6 × 10−3). In conclusion, we have identified new SLE-associated sequence variants in IKBKE and IFIH1, and proposed functional hypotheses for the association signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (6)
annan publikation (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Laxman, Navya (9)
Kindmark, Andreas (6)
Mallmin, Hans (3)
Rubin, Carl-Johan (3)
Nilsson, Olle (3)
Nilsson, Mats (2)
visa fler...
Ahlford, Annika (2)
Svedlund, Jessica (2)
Löhr, Matthias (1)
Bengtsson, Anders (1)
Gunnarsson, Iva (1)
Svenungsson, Elisabe ... (1)
Jönsen, Andreas (1)
Truedsson, Lennart (1)
Sturfelt, Gunnar (1)
Eloranta, Maija-Leen ... (1)
Nordmark, Gunnel (1)
Rönnblom, Lars (1)
Wang, Chuan (1)
Syvänen, Ann-Christi ... (1)
Pastinen, Tomi (1)
, ring (1)
Hilborn, Jöns (1)
Padyukov, Leonid (1)
Rantapää-Dahlqvist, ... (1)
Grundberg, Elin (1)
Sandling, Johanna K. (1)
Tellgren-Roth, Chris ... (1)
Lindahl, Katarina (1)
Åström, Eva (1)
Ljunggren, Östen (1)
Wu, Chenglin (1)
Strell, Carina (1)
Varghese, Oommen P. (1)
Kadekar, Sandeep (1)
Oommen, Oommen P. (1)
Sjöwall, Christoffer (1)
Yokota, Chika (1)
Kroneis, Thomas (1)
Paidikondala, Maruth ... (1)
Hilscher, Markus M. (1)
Krzywkowski, Tomasz (1)
El-Heliebi, Amin (1)
Hille, Claudia (1)
Haudum, Christoph (1)
Ercan, Erkan (1)
Chen, Shukun (1)
Smolle, Maria (1)
Rossmann, Christophe ... (1)
Darai, Evangelia (1)
visa färre...
Lärosäte
Uppsala universitet (8)
Stockholms universitet (3)
Karolinska Institutet (3)
Umeå universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy