SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Le Contel O.) "

Sökning: WFRF:(Le Contel O.)

  • Resultat 1-10 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
2.
  • Maksimovic, M., et al. (författare)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
3.
  • Hadid, L. Z., et al. (författare)
  • Solar Orbiter's first Venus flyby : Observations from the Radio and Plasma Wave instrument
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On December 27, 2020, Solar Orbiter completed its first gravity assist manoeuvre of Venus (VGAM1). While this flyby was performed to provide the spacecraft with sufficient velocity to get closer to the Sun and observe its poles from progressively higher inclinations, the Radio and Plasma Wave (RPW) consortium, along with other operational in situ instruments, had the opportunity to perform high cadence measurements and study the plasma properties in the induced magnetosphere of Venus.Aims. In this paper, we review the main observations of the RPW instrument during VGAM1. They include the identification of a number of magnetospheric plasma wave modes, measurements of the electron number densities computed using the quasi-thermal noise spectroscopy technique and inferred from the probe-to-spacecraft potential, the observation of dust impact signatures, kinetic solitary structures, and localized structures at the bow shock, in addition to the validation of the wave normal analysis on-board from the Low Frequency Receiver.Methods. We used the data products provided by the different subsystems of RPW to study Venus' induced magnetosphere.Results. The results include the observations of various electromagnetic and electrostatic wave modes in the induced magnetosphere of Venus: strong emissions of similar to 100 Hz whistler waves are observed in addition to electrostatic ion acoustic waves, solitary structures and Langmuir waves in the magnetosheath of Venus. Moreover, based on the different levels of the wave amplitudes and the large-scale variations of the electron number densities, we could identify different regions and boundary layers at Venus.Conclusions. The RPW instrument provided unprecedented AC magnetic and electric field measurements in Venus' induced magnetosphere for continuous frequency ranges and with high time resolution. These data allow for the conclusive identification of various plasma waves at higher frequencies than previously observed and a detailed investigation regarding the structure of the induced magnetosphere of Venus. Furthermore, noting that prior studies were mainly focused on the magnetosheath region and could only reach 10-12 Venus radii (R-V) down the tail, the particular orbit geometry of Solar Orbiter's VGAM1, allowed the first investigation of the nature of the plasma waves continuously from the bow shock to the magnetosheath, extending to similar to 70R(V) in the far distant tail region.
  •  
4.
  • Breuillard, H., et al. (författare)
  • Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:14, s. 7279-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
  •  
5.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
6.
  • Chen, L. -J, et al. (författare)
  • Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. 
  •  
7.
  • Chust, T., et al. (författare)
  • Observations of whistler mode waves by Solar Orbiter's RPW Low Frequency Receiver (LFR) : In-flight performance and first results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Radio and Plasma Waves (RPW) instrument is one of the four in situ instruments of the ESA/NASA Solar Orbiter mission, which was successfully launched on February 10, 2020. The Low Frequency Receiver (LFR) is one of its subsystems, designed to characterize the low frequency electric (quasi-DC - 10 kHz) and magnetic (similar to 1 Hz-10 kHz) fields that develop, propagate, interact, and dissipate in the solar wind plasma. Combined with observations of the particles and the DC magnetic field, LFR measurements will help to improve the understanding of the heating and acceleration processes at work during solar wind expansion.Aims. The capability of LFR to observe and analyze a variety of low frequency plasma waves can be demontrated by taking advantage of whistler mode wave observations made just after the near-Earth commissioning phase of Solar Orbiter. In particular, this is related to its capability of measuring the wave normal vector, the phase velocity, and the Poynting vector for determining the propagation characteristics of the waves.Methods. Several case studies of whistler mode waves are presented, using all possible LFR onboard digital processing products, waveforms, spectral matrices, and basic wave parameters.Results. Here, we show that whistler mode waves can be very properly identified and characterized, along with their Doppler-shifted frequency, based on the waveform capture as well as on the LFR onboard spectral analysis.Conclusions. Despite the fact that calibrations of the electric and magnetic data still require some improvement, these first whistler observations show a good overall consistency between the RPW LFR data, indicating that many science results on these waves, as well as on other plasma waves, can be obtained by Solar Orbiter in the solar wind.
  •  
8.
  • Fadanelli, S., et al. (författare)
  • Four-Spacecraft Measurements of the Shape and Dimensionality of Magnetic Structures in the Near-Earth Plasma Environment
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 124:8, s. 6850-6868
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new method for determining the main relevant features of the local magnetic field configuration, based entirely on the knowledge of the magnetic field gradient four‐spacecraft measurements. The method, named “magnetic configuration analysis” (MCA), estimates the spatial scales on which the magnetic field varies locally. While it directly derives from the well‐known magnetic directional derivative and magnetic rotational analysis procedures (Shi et al., 2005, htpps://doi.org/10.1029/2005GL022454; Shen et al., 2007, https://doi.org/10.1029/2005JA011584), MCA was specifically designed to address the actual magnetic field geometry. By applying MCA to multispacecraft data from the Magnetospheric Multiscale (MMS) satellites, we perform both case and statistical analyses of local magnetic field shape and dimensionality at very high cadence and small scales. We apply this technique to different near‐Earth environments and define a classification scheme for the type of configuration observed. While our case studies allow us to benchmark the method with those used in past works, our statistical analysis unveils the typical shape of magnetic configurations and their statistical distributions. We show that small‐scale magnetic configurations are generally elongated, displaying forms of cigar and blade shapes, but occasionally being planar in shape like thin pancakes (mostly inside current sheets). Magnetic configurations, however, rarely show isotropy in their magnetic variance. The planar nature of magnetic configurations and, most importantly, their scale lengths strongly depend on the plasma β parameter. Finally, the most invariant direction is statistically aligned with the electric current, reminiscent of the importance of electromagnetic forces in shaping the local magnetic configuration.
  •  
9.
  • Kretzschmar, M., et al. (författare)
  • Whistler waves observed by Solar Orbiter/RPW between 0.5 AU and 1 AU
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar wind evolution differs from a simple radial expansion, while wave-particle interactions are assumed to be the major cause for the observed dynamics of the electron distribution function. In particular, whistler waves are thought to inhibit the electron heat flux and ensure the diffusion of the field-aligned energetic electrons (Strahl electrons) to replenish the halo population.Aims. The goal of our study is to detect and characterize the electromagnetic waves that have the capacity to modify the electron distribution functions, with a special focus on whistler waves.Methods. We carried out a detailed analysis of the electric and magnetic field fluctuations observed by the Solar Orbiter spacecraft during its first orbit around the Sun, between 0.5 and 1 AU. Using data from the Search Coil Magnetometer and electric antenna, both part of the Radio and Plasma Waves (RPW) instrumental suite, we detected the electromagnetic waves with frequencies above 3 Hz and determined the statistical distribution of their amplitudes, frequencies, polarization, and k-vector as a function of distance. Here, we also discuss the relevant instrumental issues regarding the phase between the electric and magnetic measurements as well as the effective length of the electric antenna.Results. An overwhelming majority of the observed waves are right-handed circularly polarized in the solar wind frame and identified as outwardly propagating quasi-parallel whistler waves. Their occurrence rate increases by a least a factor of 2 from 1 AU to 0.5 AU. These results are consistent with the regulation of the heat flux by the whistler heat flux instability. Near 0.5 AU, whistler waves are found to be more field-aligned and to have a smaller normalized frequency (f/f(ce)), larger amplitude, and greater bandwidth than at 1 AU.
  •  
10.
  • Le Contel, O., et al. (författare)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 81

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy