SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Le Quéré C) "

Sökning: WFRF:(Le Quéré C)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sitch, S., et al. (författare)
  • Recent trends and drivers of regional sources and sinks of carbon dioxide
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 12:3, s. 653-679
  • Tidskriftsartikel (refereegranskat)abstract
    • The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 +/- 0.7 PgC yr(-1) with a small significant trend of -0.06 +/- 0.03 PgC yr(-2) (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 +/- 0.2 PgC yr(-1) with a trend in the net C uptake that is indistinguishable from zero (-0.01 +/- 0.02 PgC yr(-2)). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of 0.02 +/- 0.01 PgC yr(-2). Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 +/- 0.08 PgC yr(-2) exceeds a significant trend in heterotrophic respiration of 0.16 +/- 0.05 PgC yr(-2) - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (0.04 +/- 0.01 PgC yr(-2)), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
  •  
2.
  • Sitch, S., et al. (författare)
  • Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  • 2013
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 10, s. 20113-20177
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract. The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of –2.2 ± 0.2 Pg C yr–1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends.
  •  
3.
  • Heinze, Christoph, et al. (författare)
  • The ocean carbon sink – impacts, vulnerabilities, and challenges
  • 2015
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 6, s. 327-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO 2 ) is, next to water vapour, considered to be the most important natural green- house gas on Earth. Rapidly rising atmospheric CO 2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strate- gies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO 2 concentrations and currently take up about 25 % of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with re- spect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO 2 as well as on increased CO 2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed
  •  
4.
  • House, J, et al. (författare)
  • Climate and air quality
  • 2006
  • Ingår i: Millennium Ecosystem Assessment 2005 - Current State and Trends. Findings of the Condition and Trends Working Group (Ecosystems and Human Well-being). ; 1, s. 350-390
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Kohfeld, K. E., et al. (författare)
  • Southern Hemisphere westerly wind changes during the Last Glacial Maximum : paleo-data synthesis
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 68, s. 76-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the strength and position of Southern Hemisphere westerly winds during the Last Glacial cycle have been invoked to explain both millennial and glacial interglacial climate fluctuations. However, neither paleo models nor paleodata agree on the magnitude, or even the sign, of the change in wind strength and latitude during the most studied glacial period, the Last Glacial Maximum (LGM), compared to the recent past. This paper synthesizes paleo-environmental data that have been used to infer changes in LGM winds. Data compilations are provided for changes in terrestrial moisture, dust deposition, sea surface temperatures and ocean fronts, and ocean productivity, and existing data on Southern Hemisphere ocean circulation changes during the LGM are summarized. We find that any hypothesis of LGM wind and climate change needs to provide a plausible explanation for increased moisture on the west coast of continents, cooler temperatures and higher productivity in the Subantarctic Zone, and reductions in Agulhas leakage around southern Africa. Our comparison suggests that an overall strengthening, an equatorward displacement, or no change at all in winds could all be interpreted as consistent with observations. If a single cause related to the southern westerlies is sought for all the evidence presented, then an equatorward displacement or strengthening of the winds would be consistent with the largest proportion of the observations. However, other processes, such as weakening or poleward shifts in winds, a weakened hydrological cycle, extended sea-ice cover, and changed buoyancy fluxes, cannot be ruled out as potential explanations of observed changes in moisture, surface temperature, and productivity. We contend that resolving the position and strength of westerly winds during the LGM remains elusive based on data reconstructions alone. However, we believe that these data reconstructions of environmental conditions can be used in conjunction with model simulations to identify which processes best represent westerly wind conditions during the LGM.
  •  
6.
  • Iwayama, H., et al. (författare)
  • Different Time Scales in the Dissociation Dynamics of Core-Excited CF4 by Two Internal Clocks
  • 2017
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 119:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Fragmentation processes following C 1s -> lowest unoccupied molecular orbital core excitations in CF4 have been analyzed on the ground of the angular distribution of the CF3+ emitted fragments by means of Auger electron-photoion coincidences. Different time scales have been enlightened, which correspond to either ultrafast fragmentation, on the few-femtosecond scale, where the molecule has no time to rotate and the fragments are emitted according to the maintained orientation of the core-excited species, or dissociation after resonant Auger decay, where the molecule still keeps some memory of the excitation process before reassuming random orientation. Potential energy surfaces of the ground, core-excited, and final states have been calculated at the ab initio level, which show the dissociative nature of the neutral excited state, leading to ultrafast dissociation, as well as the also dissociative nature of some of the final ionic states reached after resonant Auger decay, yielding the same fragments on a much longer time scale.
  •  
7.
  • Le Quéré, C., et al. (författare)
  • The global carbon budget 1959–2011
  • 2013
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516. ; 5:1, s. 165-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
  •  
8.
  • Sime, Louise C., et al. (författare)
  • Southern Hemisphere westerly wind changes during the Last Glacial Maximum : model-data comparison
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 64, s. 104-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Hemisphere (SH) westerly winds are thought to be critical to global ocean circulation, productivity, and carbon storage. For example, an equatorward shift in the winds, though its affect on the Southern Ocean circulation, has been suggested as the leading cause for the reduction in atmospheric CO2 during the Last Glacial period. Despite the importance of the winds, it is currently not clear, from observations or model results, how they behave during the Last Glacial. Here, an atmospheric modelling study is performed to help determine likely changes in the SH westerly winds during the Last Glacial Maximum (LGM). Using LGM boundary conditions, the maximum in SH westerlies is strengthened by similar to+1 m s(-1) and moved southward by similar to 2 degrees at the 850 hPa pressure level. Boundary layer stabilisation effects over equatorward extended LGM sea-ice can lead to a small apparent equatorward shift in the wind band at the surface. Further sensitivity analysis with individual boundary condition changes indicate that changes in sea surface temperatures are the strongest factor behind the wind change. The HadAM3 atmospheric simulations, along with published PMIP2 coupled climate model simulations, are then assessed against the newly synthesised database of moisture observations for the LGM. Although the moisture data is the most commonly cited evidence in support of a large equatorward shift in the SH winds during the LGM, none of the models that produce realistic LGM precipitation changes show such a large equatorward shift. In fact, the model which best simulates the moisture proxy data is the HadAM3 LGM simulation which shows a small poleward wind shift. While we cannot prove here that a large equatorward shift would not be able to reproduce the moisture data as well, we show that the moisture proxies do not provide an observational evidence base for it.
  •  
9.
  • Whitmarsh, L., et al. (författare)
  • Use of aviation by climate change researchers: Structural influences, personal attitudes, and information provision
  • 2020
  • Ingår i: Global Environmental Change-Human and Policy Dimensions. - : Elsevier BV. - 0959-3780. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Aviation is a fast-growing sector, releasing more carbon dioxide per passenger kilometre than other transport modes. For climate change researchers, work-related travel - including for conferences and fieldwork - is a major carbon-emitting activity. At the same time, many argue that climate scientists have an important role in curbing their own aviation emissions to align their practices with their assertions in relation to emissions reduction. We examine the tensions between competing professional demands in relation to flying; measure levels of flying by climate and non-climate researchers; assess influences on choices and attitudes; and consider how information provision and structural changes might enable changes in practice. Study 1 entails a large, international survey of flying undertaken by climate change (including sustainability and environmental science) researchers and those from other disciplines (N = 1408). Study 2 tests effects of varying information provision on researchers' behavioural intentions and policy support to reduce flying (N = 362). Unexpectedly, we find climate change researchers - particularly professors - fly more than other researchers, but are also more likely to have taken steps to reduce or offset their flying. Providing information about the impacts of aviation increases behavioural intentions and support for institutional policies to reduce flying, particularly amongst more pro-environmental respondents. However, while attitudinal factors (e.g., personal norm) predict willingness to reduce flying, structural/social factors (e.g., family commitments, location) are more important in predicting actual flying behaviour. Recent initiatives to develop a low-carbon and more inclusive research culture within climate science and the broader research community thus need to be supported by broader policies and technologies to encourage and enable low-carbon and avoided travel.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy