SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Le Quere Corinne) "

Sökning: WFRF:(Le Quere Corinne)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sime, Louise C., et al. (författare)
  • Southern Hemisphere westerly wind changes during the Last Glacial Maximum : model-data comparison
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 64, s. 104-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Hemisphere (SH) westerly winds are thought to be critical to global ocean circulation, productivity, and carbon storage. For example, an equatorward shift in the winds, though its affect on the Southern Ocean circulation, has been suggested as the leading cause for the reduction in atmospheric CO2 during the Last Glacial period. Despite the importance of the winds, it is currently not clear, from observations or model results, how they behave during the Last Glacial. Here, an atmospheric modelling study is performed to help determine likely changes in the SH westerly winds during the Last Glacial Maximum (LGM). Using LGM boundary conditions, the maximum in SH westerlies is strengthened by similar to+1 m s(-1) and moved southward by similar to 2 degrees at the 850 hPa pressure level. Boundary layer stabilisation effects over equatorward extended LGM sea-ice can lead to a small apparent equatorward shift in the wind band at the surface. Further sensitivity analysis with individual boundary condition changes indicate that changes in sea surface temperatures are the strongest factor behind the wind change. The HadAM3 atmospheric simulations, along with published PMIP2 coupled climate model simulations, are then assessed against the newly synthesised database of moisture observations for the LGM. Although the moisture data is the most commonly cited evidence in support of a large equatorward shift in the SH winds during the LGM, none of the models that produce realistic LGM precipitation changes show such a large equatorward shift. In fact, the model which best simulates the moisture proxy data is the HadAM3 LGM simulation which shows a small poleward wind shift. While we cannot prove here that a large equatorward shift would not be able to reproduce the moisture data as well, we show that the moisture proxies do not provide an observational evidence base for it.
  •  
2.
  • Thierry, Gaelle, et al. (författare)
  • Molecular characterization of 1q44 microdeletion in 11 patients reveals three candidate genes for intellectual disability and seizures
  • 2012
  • Ingår i: American Journal of Medical Genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 158A:7, s. 1633-1640
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with a submicroscopic deletion at 1q43q44 present with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, and corpus callosum abnormalities. However, the precise relationship between most of deleted genes and the clinical features in these patients still remains unclear. We studied 11 unrelated patients with 1q44 microdeletion. We showed that the deletions occurred de novo in all patients for whom both parents' DNA was available (10/11). All patients presented with moderate to severe ID, seizures and non-specific craniofacial anomalies. By oligoarray-based comparative genomic hybridization (aCGH) covering the 1q44 region at a high resolution, we obtained a critical deleted region containing two coding genesHNRNPU and FAM36Aand one non-coding geneNCRNA00201. All three genes were expressed in different normal human tissues, including in human brain, with highest expression levels in the cerebellum. Mutational screening of the HNRNPU and FAM36A genes in 191 patients with unexplained isolated ID did not reveal any deleterious mutations while the NCRNA00201 non-coding gene was not analyzed. Nine of the 11 patients did not present with microcephaly or corpus callosum abnormalities and carried a small deletion containing HNRNPU, FAM36A, and NCRNA00201 but not AKT3 and ZNF238, two centromeric genes. These results suggest that HNRNPU, FAM36A, and NCRNA00201 are not major genes for microcephaly and corpus callosum abnormalities but are good candidates for ID and seizures. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy