SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(LeContel O.) "

Sökning: WFRF:(LeContel O.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, L., et al. (författare)
  • New Features of Electron Phase Space Holes Observed by the THEMIS Mission
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:22, s. 225004-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of electron phase-space holes (EHs) in Earth's plasma sheet by the THEMIS satellites include the first detection of a magnetic perturbation (delta B-parallel to) parallel to the ambient magnetic field (B-0). EHs with a detectable delta B-parallel to have several distinguishing features including large electric field amplitudes, a magnetic perturbation perpendicular to B-0, high speeds (similar to 0.3c) along B-0, and sizes along B-0 of tens of Debye lengths. These EHs have a significant center potential (Phi similar to k(B)T(e)/e), suggesting strongly nonlinear behavior nearby such as double layers or magnetic reconnection.
  •  
2.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
3.
  • Chasapis, A., et al. (författare)
  • Electron Heating at Kinetic Scales in Magnetosheath Turbulence
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
  •  
4.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection in Three Dimensions : Modeling and Analysis of Electromagnetic Drift Waves in the Adjacent Current Sheet
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:12, s. 10085-10103
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a model of electromagnetic drift waves in the current sheet adjacent to magnetic reconnection at the subsolar magnetopause. These drift waves are potentially important in governing 3-D structure of subsolar magnetic reconnection and in generating turbulence. The drift waves propagate nearly parallel to the X line and are confined to a thin current sheet. The scale size normal to the current sheet is significantly less than the ion gyroradius and can be less than or on the order of the wavelength. The waves also have a limited extent along the magnetic field (B), making them a three-dimensional eigenmode structure. In the current sheet, the background magnitudes of B and plasma density change significantly, calling for a treatment that incorporates an inhomogeneous plasma environment. Using detailed examination of Magnetospheric Multiscale observations, we find that the waves are best represented by series of electron vortices, superimposed on a primary electron drift, that propagate along the current sheet (parallel to the X line). The waves displace or corrugate the current sheet, which also potentially displaces the electron diffusion region. The model is based on fluid behavior of electrons, but ion motion must be treated kinetically. The strong electron drift along the X line is likely responsible for wave growth, similar to a lower hybrid drift instability. Contrary to a classical lower hybrid drift instability, however, the strong changes in the background B and n(o), the normal confinement to the current sheet, and the confinement along B are critical to the wave description.
  •  
5.
  • Ergun, R. E., et al. (författare)
  • Observations of Double Layers in Earth's Plasma Sheet
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:15, s. 155002-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first direct observations of parallel electric fields (E-parallel to) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E-parallel to signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.
  •  
6.
  • Farrugia, C. J., et al. (författare)
  • MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvénic Flow
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:10, s. 9934-9951
  • Tidskriftsartikel (refereegranskat)abstract
    • We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvénic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (∼20 nT) pointing south and (ii) a density profile with episodic decreases to values of ∼0.3 cm−3 followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of ∼2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfvén waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Te⊥>Te∥) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walén relation.
  •  
7.
  • Graham, Daniel B., et al. (författare)
  • Universality of Lower Hybrid Waves at Earth's Magnetopause
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 124:11, s. 8727-8760
  • Tidskriftsartikel (refereegranskat)abstract
    • Waves around the lower hybrid frequency are frequently observed at Earth's magnetopause and readily reach very large amplitudes. Determining the properties of lower hybrid waves is crucial because they are thought to contribute to electron and ion heating, cross‐field particle diffusion, anomalous resistivity, and energy transfer between electrons and ions. All these processes could play an important role in magnetic reconnection at the magnetopause and the evolution of the boundary layer. In this paper, the properties of lower hybrid waves at Earth's magnetopause are investigated using the Magnetospheric Multiscale mission. For the first time, the properties of the waves are investigated using fields and direct particle measurements. The highest‐resolution electron moments resolve the velocity and density fluctuations of lower hybrid waves, confirming that electrons remain approximately frozen in at lower hybrid wave frequencies. Using fields and particle moments, the dispersion relation is constructed and the wave‐normal angle is estimated to be close to 90° to the background magnetic field. The waves are shown to have a finite parallel wave vector, suggesting that they can interact with parallel propagating electrons. The observed wave properties are shown to agree with theoretical predictions, the previously used single‐spacecraft method, and four‐spacecraft timing analyses. These results show that single‐spacecraft methods can accurately determine lower hybrid wave properties.
  •  
8.
  • Li, W., et al. (författare)
  • Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:9, s. L09104-
  • Tidskriftsartikel (refereegranskat)abstract
    • Whistler mode chorus waves are receiving increased scientific attention due to their important roles in both acceleration and loss processes of radiation belt electrons. A new global survey of whistler-mode chorus waves is performed using magnetic field filter bank data from the THEMIS spacecraft with 5 probes in near-equatorial orbits. Our results confirm earlier analyses of the strong dependence of wave amplitudes on geomagnetic activity, confinement of nightside emissions to low magnetic latitudes, and extension of dayside emissions to high latitudes. An important new finding is the strong occurrence rate of chorus on the dayside at L > 7, where moderate dayside chorus is present > 10% of the time and can persist even during periods of low geomagnetic activity.
  •  
9.
  • Tao, J. B., et al. (författare)
  • A model of electromagnetic electron phase-space holes and its application
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A11213-
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron phase-space holes (EHs) are indicators of nonlinear activities in space plasmas. Most often they are observed as electrostatic signals, but recently Andersson et al. [2009] reported electromagnetic EHs observed by the THEMIS mission in the Earth's plasma sheet. As a follow-up to Andersson et al. [2009], this paper presents a model of electromagnetic EHs where the delta E x B(0) drift of electrons creates a net current. The model is examined with test-particle simulations and compared to the electromagnetic EHs reported by Andersson et al. [2009]. As an application of the model, we introduce a more accurate method than the simplified Lorentz transformation of Andersson et al. [2009] to derive EH velocity (v(EH)). The sizes and potentials of EHs are derived from v(EH), so an accurate derivation of v(EH) is important in analyzing EHs. In general, our results are qualitatively consistent with those of Andersson et al. [2009] but generally with smaller velocities and sizes.
  •  
10.
  • Torbert, R. B., et al. (författare)
  • The FIELDS Instrument Suite on MMS : Scientific Objectives, Measurements, and Data Products
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Science+Business Media B.V.. - 0038-6308 .- 1572-9672. ; 199:1-4, s. 105-135
  • Forskningsöversikt (refereegranskat)abstract
    • The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (similar to 1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI are provided in five companion papers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy