SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leanza G) "

Sökning: WFRF:(Leanza G)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leanza, G, et al. (författare)
  • Effects of neonatal lesions of the basal forebrain cholinergic system by 192 immunoglobulin G-saporin : biochemical, behavioural and morphological characterization
  • 1996
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522. ; 74:1, s. 41-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective removal of the basal forebrain cholinergic neurons by the immunotoxin 192 immunoglobulin G-saporin has offered a new powerful tool for the study of the relationships between cholinergic dysfunction and cognitive impairments. In the present study the morphological and functional consequences of selective lesions of the basal forebrain cholinergic system during early postnatal development have been investigated following bilateral intraventricular injections of 192 immunoglobulin G-saporin to immature (four-day-old) rats. Administration of increasing doses (0.2-0.8 microgram) of the immunotoxin produced dose-dependent loss of cholinergic neurons in the septal/diagonal band area (up to 72-86%) and in the nucleus basalis magnocellularis (up to 91-93%), paralleled by marked reductions in choline acetyltransferase activity in the hippocampus and several cortical regions (73-84%). The parvalbumin-positive neurons in the septal/diagonal band area and the calbindin-positive Purkinje cells in the cerebellum were unaffected at all dose levels. Brain dopamine or noradrenaline levels were unaffected or increased by the immunotoxin treatment. At the optimal dose, 0.4 microgram, the toxin conjugate produced maximal cholinergic depletion without significant mortality. Higher doses (0.8, 1.2 and 1.6 micrograms) of toxin, on the other hand, proved to be lethal for most or all of the injected animals. When tested at three and eight months after the optimal dose, in spite of persisting cholinergic depletion, the noenatally lesioned animals showed no impairment in the water maze task or in locomotor activity and exploration as compared to normal controls, probably reflecting partial sparing of the cholinergic neurons by the neonatal immunotoxic lesion (above all in the vertical and horizontal limbs of the diagonal band area), and/or a greater degree of plasticity in the developing as compared to the mature cholinergic system. The place navigational performance of the neonatally lesioned animals in the water maze task was abolished by central muscarinic cholinergic receptor blockade (by atropine) or by a second immunotoxic lesion, which eliminated virtually all residual cholinergic neurons in the septal/diagonal band area and the nucleus basalis. Administration of 192 immunoglobulin G-saporin to similarly trained, but previously normal adult rats, produced similar cholinergic depletions but much less severe place navigation deficits, suggesting that preoperative training on the task may reduce the functional consequences of a subsequent cholinergic lesion. The results thus support the view that the basal forebrain cholinergic system may be implicated in the acquisition rather than retention of spatial memory in the water maze task.
  •  
2.
  • Leanza, G, et al. (författare)
  • Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions
  • 1996
  • Ingår i: Journal of Comparative Neurology. - 0021-9967. ; 373:3, s. 7-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Reconstruction of the septohippocampal pathways by axons extending from embryonic cholinergic neuroblasts grafted into the neuron-depleted septum has been explored in the neonatal rat by using a novel lesioning and grafting protocol. Neonatal ablation of the basal forebrain cholinergic projection neurons, accompanied by extensive bilateral cholinergic denervation of the hippocampus and neocortex, was produced at postnatal day (PD) 4 by 192 immunoglobulin (IgG)-saporin intraventricularly. Four days later, cholinergic neuroblasts (from embryonic day 14 rats) were implanted bilaterally into the neuron-depleted septum by using a microtransplantation approach. The results show that homotopically implanted septal neurons survive and integrate well into the developing septal area, extending axons caudally along the myelinated fimbria-fornix and supracallosal pathways that are able to reach the appropriate targets in the denervated hippocampus and cingulate cortex as early as 4 weeks postgrafting. Moreover, the laminar innervation patterns established by the graft-derived axons closely resembled the normal ones and remained essentially unchanged up to at least 6 months, which was the longest postoperative time studied. The reinnervating fibers restored tissue choline acetyltransferase activity (up to 50% of normal) in the dorsal hippocampus and the parietooccipital cortex. Retrograde labeling with Fluoro-Gold from the host hippocampus combined with immunocytochemistry confirmed that most of the projecting neurons, indeed, were cholinergic. The results suggest that the graft-host interactions that are necessary for target-directed axon growth are present in the septohippocampal system during early postnatal maturation. Thus, the present approach may contribute to overcome the functional limitations inherent in the use of ectopically placed intrahippocampal transplants.
  •  
3.
  • Leanza, G, et al. (författare)
  • Selective immunolesioning of the basal forebrain cholinergic system disrupts short-term memory in rats
  • 1996
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 8:7, s. 1535-4154
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective depletion of nerve growth factor receptor-bearing neurons in the basal forebrain cholinergic system nuclei by the immunotoxin 192 IgG-saporin offers a new and highly useful tool for the study of the role of the forebrain cholinergic system in cognitive functions. In the present study, we have tested the effects of 192 IpG-saporin in an operant delayed matching-to-position task which has previously been used to discriminate between delay-dependent learning impairments and delay-independent disturbances of non-mnemonic processes. Rats were first trained to criterion performance and then received intraventricular injections of 5 microg of 192 IgG-saporin 4 weeks prior to a second testing session. Rats with 192 IgG-saporin lesions displayed a significant delay-dependent decline in performance compared to normal controls, indicating a deficit in short-term memory. Administration of the muscarinic blocker scopolamine (0.5 mg/kg, i.p.) produced more pronounced impairment in the performance of the normal control rats across all delays, and induced further impairment also in animals with 192 IgG-saporin lesions. These effects were not observed following control injections of methyl scopolamine, suggesting that the impairment induced by scopolamine was due to the blockade of central muscarinic receptors. No improvement in performance was observed in either group following systemic treatment with the muscarinic cholinergic agonist arecoline (1.00 mg/kg). Biochemical and morphological analyses confirmed the selective and severe (>90-95%) depletion of cholinergic neurons throughout the septal-diagonal band area and the nucleus basalis region by the intraventricular 192 IgG-saporin treatment. Although the immunotoxin was observed to produce additional damage to the cerebellar Purkinje cells, no gross motor abnormalities were observed that could contribute to the effects on accuracy in the task used here. In conclusion, the results show that selective combined lesions of the basal forebrain cholinergic neurons in the septal-diagonal band area and nucleus basalis produce long-lasting impairments in short-term memory, thus providing further support for a role of this system in cognitive functions.
  •  
4.
  • Leanza, G, et al. (författare)
  • Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin : behavioural, biochemical and stereological studies in the rat
  • 1995
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 7:2, s. 329-343
  • Tidskriftsartikel (refereegranskat)abstract
    • The elucidation of the functional role of the basal forebrain cholinergic system will require access to a highly specific and efficient cholinergic neurotoxin. Recently, selective depletion of the nerve growth factor (NGF) receptor-bearing cholinergic neurons in the rat basal forebrain and a dramatic loss of cholinergic innervation in the related cortical regions have been obtained following intraventricular injection of a newly introduced immunotoxin, 192 IgG-saporin. Here we extend these initial findings and report that administration of increasing doses (1.25, 2.5, 5.0 or 10 micrograms) of the 192 IgG-saporin conjugate into the lateral ventricles of adult rats induced dose-dependent impairments in the water maze task and passive avoidance retention, but only weak and inconsistent effects on locomotor activity. These behavioural changes were paralleled by a reduction in choline acetyltransferase activity in hippocampus and several cortical areas (up to 97%) and selective depletions of NGF receptor-positive cholinergic neurons in the septal-diagonal band area and nucleus basalis magnocellularis (up to 99%). By contrast, the non-cholinergic parvalbumin-containing neurons in the septum were completely spared, and other cholinergic projection systems (such as in the striatum, thalamus, brainstem and spinal cord) were unaffected even at the highest dose. The observed changes in the water maze and passive avoidance tasks, as well as the cholinergic cell loss, were maintained up to at least 8 months following the intraventricular injection of a single dose (5 micrograms) of the immunotoxin. The results confirm the usefulness of the 192 IgG-saporin toxin for selective and profound lesions of the basal forebrain cholinergic neurons and provide further support for a role of the basal forebrain cholinergic system in cognitive functions.
  •  
5.
  • Nilsson, O G, et al. (författare)
  • Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system
  • 1992
  • Ingår i: NeuroReport. - 0959-4965. ; 3:11, s. 8-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • A monoclonal antibody to the low-affinity NGF receptor, 192 IgG, coupled to a cytotoxin, saporin, was recently introduced as an efficient selective neurotoxin for the NGFr-bearing cholinergic neurones in the rat basal forebrain. In the present study we report that an intracerebroventricular injection of this 192 IgG-saporin conjugate induces a severe, long-lasting spatial learning impairment, as assessed in the Morris water-maze task. This behavioural impairment was associated with 65-90% depletion of choline acetyltransferase activity (ChAT) in the hippocampus and cortex. ChAT activity associated with other cholinergic neurone systems in the brain (striatum, mesencephalon, spinal cord), was left virtually unaffected. This new immunotoxin holds great promise as a tool for selective and efficient lesions of the forebrain cholinergic system in functional and behavioural studies.
  •  
6.
  • Bengzon, J, et al. (författare)
  • Regulation of neurotrophin and trkA, trkB and trkC tyrosine kinase receptor messenger RNA expression in kindling
  • 1993
  • Ingår i: Neuroscience. - 0306-4522. ; 53:2, s. 433-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of messenger RNA for nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and the tyrosine kinase receptors trkA, trkB and trkC have been studied using in situ hybridization in the rat brain 2 h and four weeks after kindling-induced seizures. Epileptiform activity evoked by hippocampal stimulation and exceeding 70 s lead to a concomitant and transient increase of brain- derived neurotrophic factor, nerve growth factor, trkB and trkC messenger RNA expression in dentate granule cells after both focal and generalized seizures. Brain-derived neurotrophic factor messenger RNA levels were also increased bilaterally in the CA1-CA3 regions, amygdala and the piriform, entorhinal, perirhinal, retrosplenial and temporal cortices after generalized seizures. The magnitude of the increases was similar throughout the development of kindling and in the fully kindled brain. No changes of trkA messenger RNA were observed. In amygdalar kindling, elevated brain-derived neurotrophic factor messenger RNA levels developed more rapidly in the amygdala-piriform cortex than after stimulation in the hippocampus but changes in the hippocampal formation were only seen in few animals. Intraventricular 6-hydroxydopamine or a bilateral fimbria-fornix lesion did not alter basal expression or seizure-evoked changes in messenger RNA levels for neurotrophins or trk receptors but increased the number of animals exhibiting elevated levels after the first stimulation, probably due to a prolongation of seizure activity. Both in sham-operated and fimbria-fornix-lesioned rats seizure activity caused a marked reduction of neurotrophin-3 messenger RNA levels in dentate granule cells. The results indicate that activation of the brain-derived neurotrophic factor gene, at least in dentate granule cells, is an "all-or-none" type of response and dependent on the duration but not the severity of seizures or the stage of kindling epileptogenesis. Changes in brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 and trkB and trkC were observed concomitantly in the dentate gyrus, which suggests that seizure activity sets in motion a cascade of genomic events possibly mediated via a common mechanism. Since altered messenger RNA levels outside hippocampus were detected only for brain-derived neurotrophic factor, neurotrophin and trk gene expression in these regions seems to be regulated differently.
  •  
7.
  • Kokaia, Merab, et al. (författare)
  • Immunolesioning of basal forebrain cholinergic neurons facilitates hippocampal kindling and perturbs neurotrophin messenger RNA regulation
  • 1996
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 70:2, s. 313-327
  • Tidskriftsartikel (refereegranskat)abstract
    • The immunotoxin 192 IgG-saporin induces an efficient and specific lesion of low-affinity nerve growth factor receptor-bearing cholinergic neurons in the basal forebrain. Intraventricular injection of 192 IgG-saporin, which caused a complete loss of cholinergic afferents to the hippocampus and neocortex and a partial denervation of amygdala and piriform cortex, was found to markedly facilitate the initial stages of seizure development in hippocampal kindling. In contrast, the progression of kindling process from focal to generalized seizures was not affected. In situ hybridization demonstrated that basal levels of brain-derived neutrotrophic factor messenger RNA in the hippocampal formation and piriform cortex were significantly decreased by the lesion, which also attenuated the seizure-induced increase of brain-derived neurotrophic factor messenger RNA expression in the hippocampus and frontal cortex. In the dentate gyrus, the 192 IgG-saporin lesion selectively reduced the upregulation of messenger RNAs for brain-derived neurotrophic factor exons I and III after a generalized seizure, whereas the increase of exon II messenger RNA was unchanged. The lesion abolished the seizure-evoked increase of nerve growth factor and TrkC messenger RNA levels and decrease of neutrophin-3 messenger RNA expression in dentate granule cells, while TrkB messenger RNA levels were not affected. We conclude that the basal forebrain cholinergic system (1) suppresses kindling epileptogenesis in the hippocampus, and (2) enhances both basal and seizure-evoked brain-derived neurotrophic factor synthesis in the hippocampal formation and some cortical areas through a specific pattern of activation of promoters within the brain-derived neurotrophic factor gene.
  •  
8.
  • Leanza, G, et al. (författare)
  • Compensatory changes of in vivo acetylcholine and noradrenaline release in the hippocampus after partial deafferentation, as monitored by microdialysis
  • 1993
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 615:1, s. 147-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Lesions of the fimbria-fornix pathways are known to induce a partial cholinergic and noradrenergic denervation of the hippocampal formation, which is followed by a slow and protracted collateral sprouting by the spared afferents. Using the intracerebral microdialysis technique, compensatory changes in extracellular levels of acetylcholine (ACh) and noradrenaline (NA) have been monitored over time in the partially denervated hippocampus of awake unrestrained rats subjected to an unilateral fimbria-fornix (FF) transection. One week after the lesion, baseline ACh output was reduced by 90% and 80% in the dorsal and ventral hippocampus, respectively, and it remained depressed still by 6 months after lesion. KCl-evoked and atropine-stimulated ACh efflux were equally reduced by 1 week after lesion, remained depressed at 3 months, but showed a significant recovery by 6 months post-lesion. Tissue choline acetyltransferase (ChAT) activity levels, initially reduced by 92% and 86%, in the dorsal and ventral hippocampus, respectively, recovered significantly by 3 months and remained unchanged at 6 months. Baseline NA output was significantly reduced (-80%) in the dorsal hippocampus by 1 week after the lesion and showed a partial recovery over time (to 50% of normal), whereas the ventral part was not significantly affected by the FF lesion. The significant FF lesion-induced reduction in KCl- or desipramine (DMI)-stimulated NA release observed in the dorsal hippocampus at 1 week after the lesion remained unchanged during the subsequent months. By contrast, in the ventral hippocampus, the initial 65-70% reduction in KCl- and DMI-stimulated NA release significantly recovered to normal levels within 3 months post-lesion. The NA tissue levels were significantly reduced by 4 weeks after lesion, in the dorsal hippocampus and did not show any significant recovery over time. In the ventral hippocampus, these levels were significantly reduced only at 4 weeks. Transmitter turnover, expressed as the ratio between dialysate levels and tissue ChAT or NA content, showed a 3-fold increase in the dorsal hippocampus at 4 weeks after lesion, but not at later time points. This indicates that the spared noradrenergic and cholinergic afferents respond to the partial denervation by a transient increase in transmitter turnover, evident as early as 4 weeks post-lesion in the region of maximal denervation. This was followed by a long-term increase in evoked transmitter release which may result from a slowly progressing compensatory sprouting of the spared afferents.
  •  
9.
  • Leanza, G, et al. (författare)
  • Functional activity of intrahippocampal septal grafts is regulated by catecholaminergic host afferents as studied by microdialysis of acetylcholine
  • 1993
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 618:1, s. 47-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous microdialysis experiments have shown that acetylcholine (ACh) release from septal grafts in the hippocampus of awake rats is influenced by the behaviour of the animals, which strongly suggests that the host brain can exert a regulatory control over the activity of the grafted neurons. Since the activity of the normal septo-hippocampal cholinergic system is likely to be regulated, in part, by brainstem catecholaminergic afferents, we wished to study the effect of catecholaminergic drugs on ACh release in the hippocampus reinnervated by septal grafts. Rats were subjected to a unilateral aspirative fimbria-fornix (FF) transection and grafted with tissue from the fetal septal-diagonal band area, either as a cell suspension injection into the depth of the hippocampus or as a solid implant in the FF lesion cavity. Microdialysis of ACh release was carried out 17-20 months after transplantation in awake, freely-moving animals. The reduction in steady-state ACh overflow induced by the FF lesion (-81%) was restored to normal or above normal levels in rats with either solid or suspension grafts. In normal rats, systemic administration of apomorphine (2.0 mg/kg, s.c.) or amphetamine (2.5 mg/kg, i.p.) caused a 3.7 (+189%) or 7.8 (+301%) pmol/15 min increase in ACh overflow compared to the previous baseline level, respectively. The drug-induced increases in ACh levels in the FF-lesioned controls was substantially lower than normal (86-89% reduction). Both apomorphine and amphetamine resulted in an approximately two-fold increase in hippocampal ACh release in rats with suspension grafts. These responses were significantly increased over those seen in rats with FF lesions only, but they tended to be lower and more variable than normal. Rats with solid septal grafts responded significantly stronger than FF lesion controls to amphetamine with two-fold increased ACh overflow, whereas the response to apomorphine was less clear-cut. Pretreatment with the catecholamine synthesis blocker alpha-methyl-p-tyrosine (AMPT; 200 mg/kg x 3) did not affect steady-state or apomorphine-stimulated release of ACh in any of the groups, whereas the effect of amphetamine was abolished in both normal and grafted rats. The results suggest that ACh release derived from septal grafts in the hippocampus, similar to the normal septo-hippocampal system, can be affected by manipulations of the host catecholaminergic systems. This mechanism may, at least in part, underlie the ability of the host brain to influence and control the activity of grafted cholinergic neurons.
  •  
10.
  • Mandel, R J, et al. (författare)
  • Amphetamine induces excess release of striatal acetylcholine in vivo that is independent of nigrostriatal dopamine
  • 1994
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 653:1-2, s. 57-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of amphetamine on striatal acetylcholine (ACh) release was studied by an in vivo intrastriatal microdialysis technique. Although we expected systemic amphetamine to inhibit baseline striatal ACh release, the opposite was found. In addition, we found that the amphetamine-induced striatal ACh release did not depend on nigrostriatal DA since 6-hydroxydopamine (6-OHDA) lesions had no effect on amphetamine-induced ACh release. Local intrastriatal injection of amphetamine via the microdialysis probe had no effect on striatal ACh release even when the probe was located more laterally in striatum to take advantage of the medial to lateral gradient of striatal ACh and D2 receptors. The hypothesis that amphetamine increased extracellular striatal ACh by increasing the release of biogenic amines besides dopamine was tested by pharmacological manipulations designed to specifically increase local striatal norepinephrine or serotonin levels. The serotonergic and noradrenergic manipulations had no effect on striatal ACh levels. These results indicate that amphetamine-induced release of ACh in striatum is mediated via distal brain regions that are functionally connected with the striatum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy