SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Leblans Niki I W) "

Search: WFRF:(Leblans Niki I W)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Verbrigghe, Niel, et al. (author)
  • Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
  • 2022
  • In: Biogeosciences. - : Copernicus. - 1726-4170 .- 1726-4189. ; 19:14, s. 3381-3393
  • Journal article (peer-reviewed)abstract
    • Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the climate system remains highly uncertain, especially in subsoils . Using natural geothermal soil warming gradients of up to +6.4 °C in subarctic grasslands , we show that soil organic carbon (SOC) stocks decline strongly and linearly with warming (-2.8tha-1 °C-1). Comparison of SOC stock changes following medium-term (5 and 10 years) and long-term (>50 years) warming revealed that all SOC stock reduction occurred within the first 5 years of warming, after which continued warming no longer reduced SOC stocks. This rapid equilibration of SOC observed in Andosol suggests a critical role for ecosystem adaptations to warming and could imply short-lived soil carbon-climate feedbacks. Our data further revealed that the soil C loss occurred in all aggregate size fractions and that SOC stock reduction was only visible in topsoil (0-10cm). SOC stocks in subsoil (10-30cm), where plant roots were absent, showed apparent conservation after >50 years of warming. The observed depth-dependent warming responses indicate that explicit vertical resolution is a prerequisite for global models to accurately project future SOC stocks for this soil type and should be investigated for soils with other mineralogies.
  •  
2.
  • Walker, Tom W.N., et al. (author)
  • A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem
  • 2020
  • In: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4:1, s. 101-108
  • Journal article (peer-reviewed)abstract
    • Temperature governs most biotic processes, yet we know little about how warming affects whole ecosystems. Here we examined the responses of 128 components of a subarctic grassland to either 5–8 or >50 years of soil warming. Warming of >50 years drove the ecosystem to a new steady state possessing a distinct biotic composition and reduced species richness, biomass and soil organic matter. However, the warmed state was preceded by an overreaction to warming, which was related to organism physiology and was evident after 5–8 years. Ignoring this overreaction yielded errors of >100% for 83 variables when predicting their responses to a realistic warming scenario of 1 °C over 50 years, although some, including soil carbon content, remained stable after 5–8 years. This study challenges long-term ecosystem predictions made from short-term observations, and provides a framework for characterization of ecosystem responses to sustained climate change.
  •  
3.
  • Fang, Chao, et al. (author)
  • Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation
  • 2023
  • In: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 240:2, s. 565-576
  • Journal article (peer-reviewed)abstract
    • Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied.Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland.Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root–shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area.These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
  •  
4.
  • Sigurdsson, Bjarni D., et al. (author)
  • Geothermal ecosystems as natural climate change experiments : The ForHot research site in Iceland as a case study
  • 2016
  • In: Icelandic Agricultural Sciences. - 1670-567X. ; 29:1, s. 53-71
  • Journal article (peer-reviewed)abstract
    • This article describes how natural geothermal soil temperature gradients in Iceland have been used to study terrestrial ecosystem responses to soil warming. The experimental approach was evaluated at three study sites in southern Iceland one grassland site that has been warm for at least 50 years (GO), and another comparable grassland site (GN) and a Sitka spruce plantation (FN) site that have both been warmed since an earthquake took place in 2008. Within each site type, five ca. 50 m long transects, with six permanent study plots each, were established across the soil warming gradients, spanning from unwarmed control conditions to gradually warmer soils. It was attempted to select the plots so the annual warming levels would be ca. +1, +3, +5, +10 and +20 °C within each transect. Results of continuous measurements of soil temperature (Ts) from 2013-2015 revealed that the soil warming was relatively constant and followed the seasonal Ts cycle of the unwarmed control plots. Volumetric water content in the top 5 cm of soil was repeatedly surveyed during 2013-2016. The grassland soils were wetter than the FN soils, but they had sometimes some significant warming-induced drying in the surface layer of the warmest plots, in contrast to FN. Soil chemistry did not show any indications that geothermal water had reached the root zone, but soil pH did increase somewhat with warming, which was probably linked to vegetation changes. As expected, the potential decomposition rate of organic matter increased significantly with warming. It was concluded that the natural geothermal gradients at the ForHot sites in Iceland offered realistic conditions for studying terrestrial ecosystem responses to warming with minimal artefacts.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view