SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lebreton Sebastien) "

Sökning: WFRF:(Lebreton Sebastien)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rodriguez, Sébastien, et al. (författare)
  • Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability : titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 911-973
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s. 
  •  
2.
  • Becher, Paul G., et al. (författare)
  • Chemical signaling and insect attraction is a conserved trait in yeasts
  • 2018
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; , s. 2962-2974
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect-associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
  •  
3.
  • Becher, Paul, et al. (författare)
  • The Scent of the Fly
  • 2018
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 0098-0331 .- 1573-1561. ; 44:5, s. 431-435
  • Tidskriftsartikel (refereegranskat)abstract
    • (Z)-4-undecenal (Z4-11Al) is the volatile pheromone produced by females of the vinegar fly Drosophila melanogaster. Female flies emit Z4-11Al for species-specific communication and mate-finding. A sensory panel finds that synthetic Z4-11Al has a characteristic flavour, which can be perceived even at the small amounts produced by a single female fly. Since only females produce Z4-11Al, and not males, we can reliably distinguish between single D. melanogaster males and females, according to their scent. Females release Z4-11Al at 2.4 ng/h and we readily sense 1 ng synthetic Z4-11Al in a glass of wine (0.03 nmol/L), while a tenfold concentration is perceived as a loud off-flavour. This corroborates the observation that a glass of wine is spoilt by a single D. melanogaster fly falling into it, which we here show is caused by Z4-11Al. The biological role of Z4-11Al or structurally related aldehydes in humans and the basis for this semiochemical convergence remains yet unclear. 
  •  
4.
  • Becher, Paul, et al. (författare)
  • Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development
  • 2012
  • Ingår i: Functional Ecology. - : Wiley. - 1365-2435 .- 0269-8463. ; 26:4, s. 822-828
  • Tidskriftsartikel (refereegranskat)abstract
    • 1.In nature, the fruit fly Drosophila melanogaster is attracted to fermenting fruit. Micro-organisms like Saccharomyces yeasts growing on fruit occupy a commonly overlooked trophic level between fruit and insects. Although the dietary quality of yeast is well established for D.melanogaster, the individual contribution of fruit and yeast on host finding and reproductive success has not been established. 2.Here, we show that baker's yeast Saccharomyces cerevisiae on its own is sufficient for fruit fly attraction, oviposition and larval development. In contrast, attraction and oviposition were significantly lower if non-fermented grape juice or growth media were used, and yeast-free grapes did not support larval development either. 3.Despite a strong preference for fermented substrates, moderate attraction to and oviposition on unfermented fruit might be adaptive in view of the fly's capacity to vector yeast. 4.Signals emitted by fruit were only of secondary importance because fermenting yeast without fruit induced the same fly behaviour as yeast fermenting on fruit. We identified a synthetic mimic of yeast odour, comprising ethanol, acetic acid, acetoin, 2-phenyl ethanol and 3-methyl-1-butanol, which was as attractive for the fly as fermenting grape juice or fermenting yeast minimal medium. 5.Yeast odours represent the critical signal to establish the flyfruityeast relationship. The traditional plantherbivore niche concept needs to be updated, to accommodate for the role of micro-organisms in insectplant interactions.
  •  
5.
  • Borrero, Felipe, et al. (författare)
  • The female sex pheromone (Z)-4-undecenal mediates flight attraction and courtship in Drosophila melanogaster
  • 2022
  • Ingår i: Journal of insect physiology. - : Elsevier BV. - 0022-1910 .- 1879-1611. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific mate communication and recognition underlies reproduction and hence speciation. Our study provides new insights in Drosophila melanogaster premating olfactory communication. Mate communication evolves during adaptation to ecological niches and makes use of social signals and habitat cues. Female-produced, species-specific volatile pheromone (Z)-4-undecenal (Z4-11Al) and male pheromone (Z)-11-octadecenyl acetate (cVA) interact with food odour in a sex-specific manner. Furthermore, Z4-11Al, which mediates upwind flight attraction in both sexes, also elicits courtship in experienced males. Two isoforms of the olfactory receptor Or69a are co-expressed in the same olfactory sensory neurons. Z4-11Al is perceived via Or69aB, while the food odorant (R)-linalool is a main ligand for the other variant, Or69aA. However, only Z4-11Al mediates courtship in experienced males, not (R)-linalool. Behavioural discrimination is reflected by calcium imaging of the antennal lobe, showing distinct glomerular activation patterns by these two compounds. Male sex pheromone cVA is known to affect male and female courtship at close range, but does not elicit upwind flight attraction as a single compound, in contrast to Z4-11Al. A blend of the food odour vinegar and cVA attracted females, while a blend of vinegar and female pheromone Z4-11Al attracted males, instead. Sex-specific upwind flight attraction to blends of food volatiles and male and female pheromone, respectively, adds a new element to Drosophila olfactory premating communication and is an unambiguous paradigm for identifying the behaviourally active components, towards a more complete concept of food-pheromone odour objects.
  •  
6.
  • Dekker, Teun, et al. (författare)
  • Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii
  • 2015
  • Ingår i: Proceedings of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 282
  • Tidskriftsartikel (refereegranskat)abstract
    • The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather 'simple' numerical shifts in underlying neural circuits.
  •  
7.
  • Lebreton, Sebastien, et al. (författare)
  • A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food
  • 2017
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. Results: We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. Conclusion: The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
  •  
8.
  •  
9.
  • Lebreton, Sebastien, et al. (författare)
  • Dietary glucose regulates yeast consumption in adult Drosophila males
  • 2014
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.
  •  
10.
  • Lebreton, Sebastien, et al. (författare)
  • Feeding regulates sex pheromone attraction and courtship in Drosophila females
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lebreton, Sebastien (14)
Witzgall, Peter (12)
Becher, Paul (11)
Bengtsson, Marie (5)
Hansson, Bill (4)
Dekker, Teun (3)
visa fler...
Borrero, Felipe (3)
Trona, Federica (3)
Piskur, Jure (2)
Mansourian, Suzan (2)
Hedenström, Erik, 19 ... (2)
Revadi, Santosh (2)
Hagman, Arne (2)
Rozpedowska, Elzbiet ... (2)
Flick, Gerhard (2)
Wallin, Erika, 1985- (2)
Carlsson, Mikael A. (2)
Solum, Marit (2)
Olsson, Marie (1)
Nässel, Dick R (1)
Hansson, Bill S. (1)
Birgersson, Göran (1)
Geppert, Wolf D. (1)
Hadid, Lina Z (1)
Tobie, Gabriel (1)
Galand, Marina (1)
Turtle, Elizabeth P. (1)
Vinatier, Sandrine (1)
Becher, Paul G. (1)
Verschut, Vasiliki (1)
Chakraborty, Amrita (1)
Joerger, Volker (1)
Schmidt, Alexandra (1)
Larsson, Mattias C. (1)
Hendrix, Amanda R. (1)
Walker, William (1)
Ignell, Rickard (1)
Anderson, Carrie M. (1)
Sachse, Silke (1)
Mandt, Kathleen (1)
Bonaventure Omondi, ... (1)
Wallin, Erika A., 19 ... (1)
Freissinet, Caroline (1)
Szopa, Cyril (1)
Coll, Patrice (1)
Carrasco, Nathalie (1)
Malaska, Michael J. (1)
Gonzalez, Francisco (1)
Lellouch, Emmanuel (1)
Charnay, Benjamin (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (14)
Stockholms universitet (3)
Mittuniversitetet (3)
Lunds universitet (2)
Karolinska Institutet (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy