SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lecacheux A.) "

Sökning: WFRF:(Lecacheux A.)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meech, K. J., et al. (författare)
  • EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign
  • 2011
  • Ingår i: Astrophysical Journal Letters. - London : IOP. - 2041-8213 .- 2041-8205. ; 734:L1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4?hr. Starting in 2010 August the period changed from 16.6?hr to near 19?hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.
  •  
2.
  • Frisk, U., et al. (författare)
  • The Odin satellite - I. Radiometer design and test
  • 2003
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 402:3, s. L27-L34
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-millimetre and Millimetre Radiometer (SMR) is the main instrument on the Swedish, Canadian, Finnish and French spacecraft Odin. It consists of a 1.1 metre diameter telescope with four tuneable heterodyne receivers covering the ranges 486-504 GHz and 541-581 GHz, and one fixed at 118.75 GHz together with backends that provide spectral resolution from 150 kHz to 1 MHz. This Letter describes the Odin radiometer, its operation and performance with the data processing and calibration described in Paper II.
  •  
3.
  •  
4.
  •  
5.
  • Highlights from the first year of Odin observations
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L39-L46
  • Tidskriftsartikel (refereegranskat)abstract
    • Key Odin operational and instrumental features and highlights from our sub-millimetre and millimetre wave observations of H2O, H218O, NH3, 15NH3 and O2 are presented, with some insights into accompanying Odin Letters in this A&A issue. We focus on new results where Odin's high angular resolution, high frequency resolution, large spectrometer bandwidths, high sensitivity or/and frequency tuning capability are crucial: H2O mapping of the Orion KL, W3, DR21, S140 regions, and four comets; H2O observations of Galactic Centre sources, of shock enhanced H2O towards the SNR IC443, and of the candidate infall source IRAS 16293-2422; H218O detections in Orion KL and in comet Ikeya-Zhang; sub-mm detections of NH3 in Orion KL (outflow, ambient cloud and bar) and ρ Oph, and very recently, of 15NH3 in~Orion KL. Simultaneous sensitive searches for the 119 GHz line of O2 have resulted in very low abundance limits, which are difficult to accomodate in chemical models. We also demonstrate, by means of a quantitative comparison of Orion KL H2O results, that the Odin and SWAS observational data sets are very consistently calibrated. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'études Spatiales (CNES, France). The Swedish Space Corporation (SSC) has been the prime industrial contractor, and is also responsible for the satellite operation from its Odin Mission Control Centre at SSC in Solna and its Odin Control Centre at ESRANGE near Kiruna in northern Sweden. See also the SNSB Odin web page: http://www.snsb.se/eng_odin_intro.shtml
  •  
6.
  • Olberg, M., et al. (författare)
  • The Odin satellite. II. Radiometer data processing and calibration
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L35-L38
  • Tidskriftsartikel (refereegranskat)abstract
    • The radiometer on-board the Odin satellite comprises four different sub-mm receivers covering the 486-581 GHz frequency range and one fixed frequency 119 GHz receiver. Two auto-correlators and one acousto-optical spectrometer serve as backends. This article gives an overview over the processing of the data delivered by these instruments and discusses calibration issues. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and the Centre National d'Études Spatiales (CNES, France). Odin is operated by the Swedish Space Corporation (SSC), the project's prime industrial contractor.
  •  
7.
  • Pagani, L., et al. (författare)
  • Low upper limits on the O2 abundance from the Odin satellite
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L77-L81
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time, a search has been conducted in our Galaxy for the 119 GHz transition connecting to the ground state of O2, using the Odin satellite. Equipped with a sensitive 3 mm receiver (Tsys(SSB) = 600 K), Odin has reached unprecedented upper limits on the abundance of O2, especially in cold dark clouds where the excited state levels involved in the 487 GHz transition are not expected to be significantly populated. Here we report upper limits for a dozen sources. In cold dark clouds we improve upon the published SWAS upper limits by more than an order of magnitude, reaching N(O2)/N(H2) <= 10-7 in half of the sources. While standard chemical models are definitively ruled out by these new limits, our results are compatible with several recent studies that derive lower O2 abundances. Goldsmith et al. (\cite{SWAS2002}) recently reported a SWAS tentative detection of the 487 GHz transition of O2 in an outflow wing towards rho Oph A in a combination of 7 beams covering approximately 10arcmin x 14arcmin . In a brief (1.3 hour integration time) and partial covering of the SWAS region (~65% if we exclude their central position), we did not detect the corresponding 119 GHz line. Our 3 sigma upper limit on the O2 column density is 7.3x 1015 cm-2. We presently cannot exclude the possibility that the SWAS signal lies mostly outside of the 9\arcmin Odin beam and has escaped our sensitive detector. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is operating Odin.
  •  
8.
  • Sandqvist, Aa., et al. (författare)
  • Odin observations of H2O in the Galactic Centre
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L63-L67
  • Tidskriftsartikel (refereegranskat)abstract
    • The Odin satellite has been used to detect emission and absorption in the 557-GHz H216O line in the Galactic Centre towards the Sgr Astar Circumnuclear Disk (CND), and the Sgr A +20 km s-1 and +50 km s-1 molecular clouds. Strong broad H2O emission lines have been detected in all three objects. Narrow H2O absorption lines are present at all three positions and originate along the lines of sight in the 3-kpc Spiral Arm, the -30 km s-1 Spiral Arm and the Local Sgr Spiral Arm. Broad H2O absorption lines near -130 km s-1 are also observed, originating in the Expanding Molecular Ring. A new molecular feature (the ``High Positive Velocity Gas'' - HPVG) has been identified in the positive velocity range of ~+120 to +220 km s-1, seen definitely in absorption against the stronger dust continuum emission from the +20 km s-1 and +50 km s-1 clouds and possibly in emission towards the position of Sgr Astar CND. The 548-GHz H218O isotope line towards the CND is not detected at the 0.02 K (rms) level. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is also responsible for the satellite operation.
  •  
9.
  • Wilson, C. D., et al. (författare)
  • Submillimeter emission from water in the W3 region
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L59-L62
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the Odin satellite, we have mapped the submillimeter emission from the 110-101 transition of ortho-water in the W3 star-forming region. A 5arcminx 5arcmin map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km s-1; however, some positions in the map show a single strong line at -43 km s-1. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is also responsible for the satellite operation.
  •  
10.
  • Cavalie, T., et al. (författare)
  • Observation of water vapor in the stratosphere of Jupiter with the Odin space telescope
  • 2008
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633. ; 56:12, s. 1573-1584
  • Tidskriftsartikel (refereegranskat)abstract
    • The water vapor line at 557 GHz has been observed with the Odin space telescope with a high signal-to-noise ratio and a high spectral resolution on November 8, 2002. The analysis of this observation as well as a re-analysis of previously published observations obtained with the submillimeter wavelength astronomy satellite seem to favor a cometary origin (Shoemaker-Levy 9) for water in the stratosphere of Jupiter, in agreement with the ISO observation results. Our model predicts that the water line should become fainter and broader from 2007. The observation of such a temporal variability would be contradictory with an IDP steady flux, thus supporting the SL9 source hypothesis. © 2008 Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy