SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Kwanghee) "

Sökning: WFRF:(Lee Kwanghee)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jeong, Soyeong, et al. (författare)
  • Controlling the Chromaticity of White Organic Light‐Emitting Diodes Using a Microcavity Architecture
  • 2019
  • Ingår i: Advanced Optical Materials. - : John Wiley & Sons. - 2162-7568 .- 2195-1071. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The tailoring of the chromaticity of white organic light-emitting diodes (WOLEDs) has presented a significant challenge in their application in smart lighting sources to improve the quality of life and human performance. Here, a new microcavity WOLED (M-WOLED) structure to modulate the chromaticity of the emitted light is demonstrated by only adjusting the thickness of the white light-emitting layer. By introducing a polymer-metal hybrid electrode that functions both as a partially reflective mirror and a transparent electrode, a very simple microcavity architecture that does not require additional outer mirrors, such as distributed Bragg reflectors is developed. The resulting M-WOLEDs exhibit reddish-, greenish-, and bluish-white colors with different thicknesses of the single white light-emitting layer.
  •  
2.
  • Kim, Seong-Min, et al. (författare)
  • Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the mixed electron/hole and ion transport in the aqueous environment, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic electrochemical transistor has been regarded as one of the most promising device platforms for bioelectronics. Nonetheless, there exist very few in-depth studies on how intrinsic channel material properties affect their performance and long-term stability in aqueous environments. Herein, we investigated the correlation among film microstructural crystallinity/composition, device performance, and aqueous stability in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. The highly organized anisotropic ordering in crystallized conducting polymer films led to remarkable device characteristics such as large transconductance (similar to 20 mS), extraordinary volumetric capacitance (113 F.cm(-3)), and unprecedentedly high [mu C*] value (similar to 490 F.cm(-1) V-1 s(-1)). Simultaneously, minimized poly(styrenesulfonate) residues in the crystallized film substantially afforded marginal film swelling and robust operational stability even after amp;gt;20-day water immersion, amp;gt;2000-time repeated on-off switching, or high-temperature/pressure sterilization. We expect that the present study will contribute to the development of long-term stable implantable bioelectronics for neural recording/stimulation.
  •  
3.
  • Kee, Seyoung, et al. (författare)
  • Highly Deformable and See‐Through Polymer Light‐Emitting Diodes with All‐Conducting‐Polymer Electrodes
  • 2017
  • Ingår i: Advanced Materials. - : John Wiley & Sons. - 0935-9648 .- 1521-4095. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the high expectation of deformable and see-through displays for future ubiquitous society, current light-emitting diodes (LEDs) fail to meet the desired mechanical and optical properties, mainly because of the fragile transparent conducting oxides and opaque metal electrodes. Here, by introducing a highly conductive nanofibrillated conducting polymer (CP) as both deformable transparent anode and cathode, ultraflexible and see-through polymer LEDs (PLEDs) are demonstrated. The CP-based PLEDs exhibit outstanding dual-side light-outcoupling performance with a high optical transmittance of 75% at a wavelength of 550 nm and with an excellent mechanical durability of 9% bending strain. Moreover, the CP-based PLEDs fabricated on 4 µm thick plastic foils with all-solution processing have extremely deformable and foldable light-emitting functionality. This approach is expected to open a new avenue for developing wearable and attachable transparent displays.
  •  
4.
  • Kee, Seyoung, et al. (författare)
  • Tuning the Mechanical and Electrical Properties of Stretchable PEDOT:PSS/Ionic Liquid Conductors
  • 2020
  • Ingår i: Macromolecular Chemistry and Physics. - : John Wiley & Sons. - 1022-1352 .- 1521-3935. ; 221:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Conducting polymers (CPs) constitute a promising building block to establish next-generation stretchable electronics. However, achieving CPs with both high electrical conductivity and outstanding mechanical stretchability beyond flexibility is still a major challenge. Therefore, understanding the key factors controlling such characteristics of CPs is required. Herein, a method to simultaneously manipulate the mechanical and electrical properties of a representative CP, PEDOT:PSS, by modifying ionic liquid (IL) additives is reported. The cation/anion modification of ILs distinctly improves the electrical conductivity of PEDOT:PSS up to ≈1075 S cm−1, and the PEDOT:PSS/IL films showing higher conductivity also exhibit superior electromechanical stretchability, enabling them to maintain their initial conductivity under a tensile strain of 80%. Based on grazing incidence wide angle X-ray scattering and Fourier transform infrared spectroscopy analyses, it is found that the cation/anion-modified ILs control the crystallinity and π–π stacking density of conjugated PEDOT chains and the growth of amorphous PSS domains via IL-induced phase separation between PEDOT and PSS, which can be the origin of the significant conductivity and stretchability improvements in PEDOT:PSS/IL composites. This study provides guidance to develop highly stretchable CP-based conductors/electrodes.
  •  
5.
  • Kim, Seong-Min, et al. (författare)
  • High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
  • 2018
  • Ingår i: NPG ASIA MATERIALS. - : NATURE PUBLISHING GROUP. - 1884-4049 .- 1884-4057. ; 10, s. 255-265
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.
  •  
6.
  • Ki, Taeyoon, et al. (författare)
  • In Situ Doping of the PEDOT Top Electrode for All-Solution-Processed Semitransparent Organic Solar Cells
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 15:40, s. 47317-47326
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of an ideal solution-processable transparent electrode has been a challenge in the field of all-solution-processed semitransparent organic solar cells (ST-OSCs). We present a novel poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) top electrode for all-solution-processed ST-OSCs through in situ doping of PEDOT:PSS. A strongly polarized long perfluoroalkyl (n = 8) chain-anchored sulfonic acid effectively eliminates insulating PSS and spontaneously crystallizes PEDOT at room temperature, leading to outstanding electrical properties and transparency of PEDOT top electrodes. Doped PEDOT-based ST-OSCs yield a high power conversion efficiency of 10.9% while providing an average visible transmittance of 26.0% in the visible range. Moreover, the strong infrared reflectivity of PEDOT enables ST-OSCs to reject 62.6% of the heat emitted by sunlight (76.7% from infrared radiation), outperforming the thermal insulation capability of commercial tint films. This light management approach using PEDOT enables ST-OSCs to simultaneously provide energy generation and energy savings, making it the first discovery toward sustainable energy in buildings.
  •  
7.
  • Thorek, Daniel L J, et al. (författare)
  • Internalization of secreted antigen-targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen receptor axis
  • 2016
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:367
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. Understanding this resistance is confounded by a lack of noninvasive means to assess AR activity in vivo. We report intracellular accumulation of a secreted antigen-targeted antibody (SATA) that can be used to characterize disease, guide therapy, and monitor response. AR-regulated human kallikrein-related peptidase 2 (free hK2) is a prostate tissue-specific antigen produced in prostate cancer and androgen-stimulated breast cancer cells. Fluorescent and radio conjugates of 11B6, an antibody targeting free hK2, are internalized and noninvasively report AR pathway activity in metastatic and genetically engineered models of cancer development and treatment. Uptake is mediated by a mechanism involving the neonatal Fc receptor. Humanized 11B6, which has undergone toxicological tests in nonhuman primates, has the potential to improve patient management in these cancers. Furthermore, cellspecific SATA uptake may have a broader use for molecularly guided diagnosis and therapy in other cancers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy