SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Regent) "

Sökning: WFRF:(Lee Regent)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruijn, Laura E., et al. (författare)
  • A histopathological classification scheme for abdominal aortic aneurysm disease
  • 2021
  • Ingår i: JVS-Vascular Science. - : Elsevier. - 2666-3503. ; 2, s. 260-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective:  Two consensus histopathological classifications for thoracic aortic aneurysms (TAAs) and inflammatory aortic diseases have been issued to facilitate clinical decision-making and inter-study comparison. However, these consensus classifications do not specifically encompass abdominal aortic aneurysms (AAAs). Given its high prevalence and the existing profound pathophysiologic knowledge gaps, extension of the consensus classification scheme to AAAs would be highly instrumental. The aim of this study was to test the applicability of, and if necessary to adapt, the issued consensus classification schemes for AAAs.Methods:  Seventy-two AAA anterolateral wall samples were collected during elective and emergency open aneurysm repair performed between 2002 and 2013. Histologic analysis (hematoxylin and eosin and Movat Pentachrome) and (semi-quantitative and qualitative) grading were performed in order to map the histological aspects of AAA. Immunohistochemistry was performed for visualization of aspects of the adaptive and innate immune system, and for a more detailed analysis of atherosclerotic lesions in AAA.Results:  Because the existing consensus classification schemes do not adequately capture the aspects of AAA disease, an AAA-specific 11-point histopathological consensus classification was devised. Systematic application of this classification indicated several universal features for AAA (eg, [almost] complete elastolysis), but considerable variation for other aspects (eg, inflammation and atherosclerotic lesions).Conclusions:  This first multiparameter histopathological AAA consensus classification illustrates the sharp histological contrasts between thoracic and abdominal aneurysms. The value of the proposed scoring system for AAA disease is illustrated by its discriminatory capacity to identify samples from patients with a nonclassical (genetic) variant of AAA disease.
  •  
2.
  • Dib, Lea, et al. (författare)
  • Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications
  • 2023
  • Ingår i: Nature Cardiovascular Research. - 2731-0590. ; 2:7, s. 656-672
  • Tidskriftsartikel (refereegranskat)abstract
    • The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease, is conceptualized as lipid-driven inflammation in which macrophages play a nonredundant role. However, evidence emerging so far from single-cell atlases suggests a dichotomy between lipid-associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining single-cell RNA sequencing (scRNA-seq) of human surgical carotid endarterectomies in a discovery cohort with bulk RNA-seq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project), we reveal the existence of PLIN2hi/TREM1hi macrophages as a Toll-like receptor (TLR)-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for cardiovascular disease.
  •  
3.
  • Edsfeldt, Andreas, et al. (författare)
  • Interferon regulatory factor-5-dependent CD11c+ macrophages contribute to the formation of rupture-prone atherosclerotic plaques
  • 2022
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 1522-9645 .- 0195-668X. ; 43:19, s. 1864-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability.METHODS AND RESULTS: Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts.CONCLUSION: Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.KEY QUESTION: The transcription factor interferon regulatory factor-5 (IRF5) is a master regulator of macrophage activation that has been shown to have a role in murine atherogenesis. Its role in human atherosclerosis and its complications is unknown.KEY FINDING: Interferon regulatory factor-5 is linked to plaque vulnerability and symptoms in human carotid endarterectomies. In a murine model of inducible carotid artery plaque rupture, IRF5 drives plaque rupture. Interferon regulatory factor-5 modulates macrophage phenotype and it colocalises with CD11c+ macrophages at the plaque shoulder.TAKE-HOME MESSAGE: We demonstrate a mechanistic link between the IRF5, plaque macrophages, and plaque vulnerability to rupture. Interferon regulatory factor-5 is a potential candidate therapeutic target in human atherosclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy