SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Sang Uk) "

Sökning: WFRF:(Lee Sang Uk)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
2.
  • Shvartzvald, Yossi, et al. (författare)
  • Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf
  • 2019
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 157:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinematics of isolated brown dwarfs in the Galaxy, beyond the solar neighborhood, is virtually unknown. Microlensing has the potential to probe this hidden population, as it can measure both the mass and five of the six phase-space coordinates (all except the radial velocity) even of a dark isolated lens. However, the measurements of both the microlens-parallax and finite-source effects are needed in order to recover the full information. Here, we combine the Spitzer satellite parallax measurement with the ground-based light curve, which exhibits strong finite-source effects, of event OGLE-2017-BLG-0896. We find two degenerate solutions for the lens (due to the known satellite-parallax degeneracy), which are consistent with each other except for their proper motion. The lens is an isolated brown dwarf with a mass of either 18 +/- 1 M-J or 20 +/- 1 M-J. This is the lowest isolated-object mass measurement to date, only similar to 45% more massive than the theoretical deuterium-fusion boundary at solar metallicity, which is the common definition of a free-floating planet. The brown dwarf is located at either 3.9 +/- 0.1 kpc or 4.1 +/- 0.1 kpc toward the Galactic bulge, but with proper motion in the opposite direction of disk stars, with one solution suggesting it is moving within the Galactic plane. While it is possibly a halo brown dwarf, it might also represent a different, unknown population.
  •  
3.
  •  
4.
  • Imran, Qari Muhammad, et al. (författare)
  • Transcriptome wide identification and characterization of NO-responsive WRKY transcription factors in Arabidopsis thaliana L.
  • 2018
  • Ingår i: Environmental and Experimental Botany. - : Elsevier. - 0098-8472 .- 1873-7307. ; 148, s. 128-143
  • Tidskriftsartikel (refereegranskat)abstract
    • WRKY transcription factors are important plant-specific regulatory genes characterized by one or two conserved WRKY domain(s) usually followed by a zinc-finger motif. In this study using Arabidopsis thaliana, the RNA-Seq based transcriptomic analysis showed differential expression of 33 genes encoding WRKY TFs in response to the nitric oxide (NO) donor S-Nitrosocysteine (CySNO). Interestingly, 93.9% of these TFs were up-regulated with at least 2-fold change, suggesting their putative involvement in NO mediated gene regulation. GO- analysis of all the 33 transcriptomic elements showed their putative involvement in biological processes such as abiotic stress tolerance and defense against fungal pathogens (89.39 fold enrichment). Analysis of the NO-responsive AtWRKY TFs promoter region revealed the presence of the cis-acting elements such as ABRE, EIRE, ERE, and MBS involved in osmotic stress response, maximal elicitor-mediated activation, and drought-stress regulation. The analysis of NO-responsive AtWRKY TF motifs and their comparison with rice, soybean, and tomato orthologs suggested that members of the WRKY family belonging to the same group shared similar motifs and phylogenetic tree suggested that these TFs were highly conserved. Validation of transcriptomic data through quantitative real time-PCR showed a high correlation coefficient (0.85) indicating the high reliability and similarity of both types of analysis. Comparison of the NO-responsive and non-responsive WRKYs showed the presence of tyrosine (T) and cysteine (C) residues at a distance of 7 residues from the WRKYGQK motif which may serve as potential targets for modification by NO via tyrosine nitration and S-nitrosylation. We also validated the response of WRKYs through in vivo analysis using atwrky62 loss of function mutant and the results indicated a negative role of AtWRKY62 in plant growth. Furthermore, atwrky62 showed significantly less SNO contents compared to wild type plants indicating putative role of AtWRKY62 in NO metabolism.
  •  
5.
  • Imran, Qari Muhammad, et al. (författare)
  • WRKYs, the Jack-of-various-Trades, Modulate Dehydration Stress in Populus davidiana-A Transcriptomic Approach
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 20:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Populus davidiana, native to Korea and central Asian countries, is a major contributor to the Korean forest cover. In the current study, using high-throughput RNA-seq mediated transcriptome analysis, we identified about 87 P. davidiana WRKY transcription factors (PopdaWRKY TFs) that showed differential expression to dehydration stress in both sensitive and tolerant cultivars. Our results suggested that, on average, most of the WRKY genes were upregulated in tolerant cultivars but downregulated in sensitive cultivars. Based on protein sequence alignment, P. davidiana WRKYs were classified into three major groups, I, II, III, and further subgroups. Phylogenetic analysis showed that WRKY TFs and their orthologs in Arabidopsis and rice were clustered together in the same subgroups, suggesting similar functions across species. Significant correlation was found among qRT-PCR and RNA-seq analysis. In vivo analysis using model plant Arabidopsis showed that atwrky62 (orthologous to Potri.016G137900) knockout mutants were significantly sensitive to dehydration possibly due to an inability to close their stomata under dehydration conditions. In addition, a concomitant decrease in expression of ABA biosynthetic genes was observed. The AtHK1 that regulates stomatal movement was also downregulated in atwrky62 compared to the wild type. Taken together, our findings suggest a regulatory role of PopdaWRKYs under dehydration stress.
  •  
6.
  • Mun, Bong-Gyu, et al. (författare)
  • Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana
  • 2017
  • Ingår i: 3 Biotech. - : Springer. - 2190-5738 .- 2190-572X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Populus davidiana is native to the Korean Peninsula and is one of the most dominant and abundantly growing forest trees in eastern Asia. Compared to other Populus species such as P. trichocarpa, P. euphratica, and P. tremula, relatively little is known about P. davidiana. Here, we performed transcriptomic analysis of P. davidiana under drought stress induced by 10% polyethylene glycol. A total of 12,403 and 12,414 differentially expressed genes (DEGs) were successfully annotated with the P. trichocarpa reference genome after 6 and 12 h of treatment, respectively. Of these, a total of 404 genes (238 up-regulated and 166 down-regulated) after 6 h and 359 genes (187 up-regulated and 172 down-regulated) after 12 h of treatment were identified as transcription factors. Transcription factors known to be key genes for drought stress response, such as AP2-EREB, WRKY, C2H2, and NAC, were identified. This results suggesting that early induction of these genes affected initiation of transcriptional regulation in response to drought stress. Quantitative real-time PCR results of selected genes showed highly significant (R = 0.93) correlation with RNA-Seq data. Interestingly, the expression pattern of some transcription factors was P. davidiana specific. The sequence of P. davidiana ortholog of P. trichocarpa gene POPTR_0018s10230, which plays an important role in plant response to drought, was further analyzed as our RNA-Seq results showed highly significant changes in the expression of this gene following the stress treatment. Sequence of the gene was compared to P. trichocarpa gene sequence using cloning-based sequencing. Additionally, we generated a predicted 3D protein structure for the gene product. Results indicated that the amino acid sequence of P. davidiana-specific POPTR_0018s10230 is different at six different positions compared to P. trichocarpa, resulting in a significantly different structure of the protein. Identifying the transcription factors expressed in P. davidiana under drought stress will not only offer clues for understanding the underlying mechanisms involved in drought stress physiology but also serve as a basis for future molecular studies on this species.
  •  
7.
  • Al Azzawi, Tiba Nazar Ibrahim, et al. (författare)
  • Evaluation of Iraqi Rice Cultivars for Their Tolerance to Drought Stress
  • 2020
  • Ingår i: Agronomy. - : MDPI. - 2073-4395. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought stress is a serious problem around the globe and particularly in the Republic of Iraq. Rice is the third most consumed crop for the Iraqi people; however, its cultivation and production is very low due to several challenges including drought. The current study was performed to evaluate five Iraqi rice cultivars along with relevant (drought-tolerant and drought-susceptible) controls under drought stress, either by treatment with 10% PEG (polyethylene glycol) or through water withholding to induce natural drought stress. The phenotypes of all the cultivars were evaluated and the transcriptional responses of key drought-responsive candidate genes, identified through the EST-SSR marker-based approach, were studied. We also studied transcript accumulation of drought-related transcriptional factors, such as OsGRASS23, OsbZIP12, and OsDREB2A. Moreover, the reference cultivars also included a drought-tolerant inter-specific cultivar Nerica 7 (a cross between Oryza sativa ssp. indica X O. glaberrima). Among the cultivars, the more drought-tolerant phenotypic characteristics and higher transcript accumulation of drought-related marker genes OsE647 and OsE1899 and transcriptional factors OsGRASS23, OsbZIP12, and OsDREB2A were observed in four (out of five) significantly drought-tolerant Iraqi cultivars; Mashkab, followed by Furat, Yasmen, and Amber 33. On another note, Amber Barka was found to be significantly drought susceptible. Mashkab and Amber Barka were found to be the most drought-tolerant and-susceptible cultivars, respectively. The identified tolerant cultivars may potentially serve as a genetic source for the incorporation of drought-tolerant phenotypes in rice.
  •  
8.
  •  
9.
  • Hussain, Adil, et al. (författare)
  • Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana
  • 2016
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants.
  •  
10.
  • Imran, Qari Muhammad, et al. (författare)
  • Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in Arabidopsis thaliana
  • 2016
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy