SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leek J) "

Sökning: WFRF:(Leek J)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramilowski, JA, et al. (författare)
  • Functional annotation of human long noncoding RNAs via molecular phenotyping
  • 2020
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 30:7, s. 1060-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
  •  
2.
  • Brookes, Paul, et al. (författare)
  • Critical slowing down in circuit quantum electrodynamics
  • 2021
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical slowing down of the time it takes a system to reach equilibrium is a key signature of bistability in dissipative first-order phase transitions. Understanding and characterizing this process can shed light on the underlying many-body dynamics that occur close to such a transition. Here, we explore the rich quantum activation dynamics and the appearance of critical slowing down in an engineered superconducting quantum circuit. Specifically, we investigate the intermediate bistable regime of the generalized Jaynes-Cummings Hamiltonian (GJC), realized by a circuit quantum electrodynamics (cQED) system consisting of a transmon qubit coupled to a microwave cavity. We find a previously unidentified regime of quantum activation in which the critical slowing down reaches saturation and, by comparing our experimental results with a range of models, we shed light on the fundamental role played by the qubit in this regime.
  •  
3.
  • Åsberg, Dennis, 1988-, et al. (författare)
  • The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography
  • 2017
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1496, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • The adsorption mechanism for three peptides was studied under overloaded conditions through adsorption isotherm measurements in the presence of an ion-pairing reagent, trifluoroacetic acid (TFA), on an end-capped C18-bonded stationary phase. The overall aim of the study was to obtain a better understanding of how the acetonitrile and the TFA fractions in the eluent affected the overloaded elution profiles and the selectivity between peptides using mechanistic modelling and multivariate design of experiments. When studying the effect of TFA, direct evidence for ion pair formation between a peptide and TFA in acetonitrile-water solutions was provided by fluorine-proton nuclear Overhauser NMR enhancement experiments and the adsorption of TFA on the stationary phase was measured by frontal analysis. The adsorption isotherms for each peptide were then determined by the inverse method at eight TFA concentrations ranging from 2.6 mM to 37.3 mM (0.02–0.29 vol-%) in isocratic elution. The equilibrium between the peptide ion and the peptide-TFA complex was modelled by coupling the mass-balance to reaction kinetics and determining separate adsorption isotherms for the two species. We found that a Langmuir isotherm described the elution profile of peptide-TFA complex well while the peptide ion was described by a bi-Langmuir adsorption isotherm since it exhibited strong secondary interactions. The elution profiles had an unfavorable shape at low TFA concentrations consisting of a spike in their front and a long tailing rear due to the secondary interactions for the peptide ion having very low saturation capacity. The acetonitrile dependence on the adsorption isotherms was studied by determination of adsorption isotherms directly from elution profiles obtained in gradient elution which enabled a broad acetonitrile interval to be studied. Here, it was found that the column saturation capacity was quickly reached at very low acetonitrile fractions and that there were significant variations in adsorption with the molecular weight. Finally, practical implications for method development are discussed based on an experimental design where gradient slope and TFA concentrations are used as factors. (c) 2017 Published by Elsevier B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy