SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehtio J) "

Sökning: WFRF:(Lehtio J)

  • Resultat 1-10 av 161
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Tamborero, D, et al. (författare)
  • The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology
  • 2022
  • Ingår i: Nature cancer. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 251-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing need for systems that efficiently support the work of medical teams at the precision-oncology point of care. Here, we present the implementation of the Molecular Tumor Board Portal (MTBP), an academic clinical decision support system developed under the umbrella of Cancer Core Europe that creates a unified legal, scientific and technological platform to share and harness next-generation sequencing data. Automating the interpretation and reporting of sequencing results decrease the need for time-consuming manual procedures that are prone to errors. The adoption of an expert-agreed process to systematically link tumor molecular profiles with clinical actions promotes consistent decision-making and structured data capture across the connected centers. The use of information-rich patient reports with interactive content facilitates collaborative discussion of complex cases during virtual molecular tumor board meetings. Overall, streamlined digital systems like the MTBP are crucial to better address the challenges brought by precision oncology and accelerate the use of emerging biomarkers.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Maleki, S, et al. (författare)
  • Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 35712-
  • Tidskriftsartikel (refereegranskat)abstract
    • Individuals with a bicuspid aortic valve (BAV) are at significantly higher risk of developing aortic complications than individuals with tricuspid aortic valves (TAV) and defective signaling during the embryonic development and/or life time exposure to abnormal hemodynamic have been proposed as underlying factors. However, an explanation for the molecular mechanisms of aortopathy in BAV has not yet been provided. We combined proteomics, RNA analyses, immunohistochemistry, and electron microscopy to identify molecular differences in samples of non-dilated ascending aortas from BAV (N = 62) and TAV (N = 54) patients. Proteomic analysis was also performed for dilated aortas (N = 6 BAV and N = 5 TAV) to gain further insight into the aortopathy of BAV. Our results collectively showed the molecular signature of an endothelial/epithelial-mesenchymal (EndMT/EMT) transition-like process, associated with instability of intimal cell junctions and activation of RHOA pathway in the intima and media layers of ascending aorta in BAV patients. We propose that an improper regulation of EndMT/EMT during the spatiotemporally related embryogenesis of semilunar valves and ascending aorta in BAV individuals may result in aortic immaturity and instability prior to dilation. Exasperation of EndMT/EMT state in post embryonic life and/or exposure to non-physiological hemodynamic could lead to the aneurysm of ascending aorta in BAV individuals.
  •  
9.
  •  
10.
  • Nordin, Joel Z., et al. (författare)
  • Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties
  • 2015
  • Ingår i: Nanomedicine. - : Elsevier BV. - 1549-9634 .- 1549-9642. ; 11:4, s. 879-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading toadifferent in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 161

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy