SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lei Jiaxin) "

Sökning: WFRF:(Lei Jiaxin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • He, Li, et al. (författare)
  • In silico promoter analysis and functional validation identify CmZFH, the co-regulator of hypoxia-responsive genes CmScylla and CmLPCAT
  • 2022
  • Ingår i: Insect Biochemistry and Molecular Biology. - : Elsevier. - 0965-1748 .- 1879-0240. ; 140
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.
  •  
2.
  •  
3.
  • Deng, Huan, et al. (författare)
  • Altered Expression of the Hedgehog Pathway Proteins BMP2, BMP4, SHH, and IHH Involved in Knee Cartilage Damage of Patients With Osteoarthritis and Kashin-Beck Disease
  • 2022
  • Ingår i: Cartilage. - : Sage Publications. - 1947-6035 .- 1947-6043. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate the expression of Hedgehog (HH) signaling pathway proteins in knee articular cartilage from Kashin-Beck disease (KBD) and osteoarthritis (OA) patients.METHODS: Knee articular cartilage samples were collected from normal (N), OA, and KBD adults (aged 38-60 years) and divided into 3 groups with 6 subjects in each group. The localization of the HH pathway proteins bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 4 (BMP4), Sonic hedgehog (SHH), and Indian hedgehog (IHH) was observed with the microscope after immunohistochemical (IHC) staining. Positive staining cell rates of each proteins were compared.RESULTS: The strongest stainings of all proteins were observed in the middle zones of all 3 groups. The positive staining rates of BMP4 and IHH were significantly lower in the OA and KBD groups than those in the N group in all 3 zones. The positive staining rates of BMP2 and SHH tend to be lower in the OA and KBD groups than those in the N group in the deep zone, while higher in the OA and KBD groups than those in the N group in superficial and middle zones.CONCLUSIONS: Altered expression of the HH pathway proteins BMP2, BMP4, SHH, and IHH was found in OA and KBD articular cartilage. There seemed to be a compensatory effect between SHH and IHH in cartilage damage. Further studies on the pathogenesis of OA and KBD may be carried out from these aspects in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy