SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Leibiger B) "

Search: WFRF:(Leibiger B)

  • Result 1-10 of 96
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Mir-Coll, J, et al. (author)
  • Human Islet Microtissues as an In Vitro and an In Vivo Model System for Diabetes
  • 2021
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:4
  • Journal article (peer-reviewed)abstract
    • Loss of pancreatic β-cell function is a critical event in the pathophysiology of type 2 diabetes. However, studies of its underlying mechanisms as well as the discovery of novel targets and therapies have been hindered due to limitations in available experimental models. In this study we exploited the stable viability and function of standardized human islet microtissues to develop a disease-relevant, scalable, and reproducible model of β-cell dysfunction by exposing them to long-term glucotoxicity and glucolipotoxicity. Moreover, by establishing a method for highly-efficient and homogeneous viral transduction, we were able to monitor the loss of functional β-cell mass in vivo by transplanting reporter human islet microtissues into the anterior chamber of the eye of immune-deficient mice exposed to a diabetogenic diet for 12 weeks. This newly developed in vitro model as well as the described in vivo methodology represent a new set of tools that will facilitate the study of β-cell failure in type 2 diabetes and would accelerate the discovery of novel therapeutic agents.
  •  
4.
  • Avall, Karin, et al. (author)
  • Apolipoprotein CIII links islet insulin resistance to beta-cell failure in diabetes
  • 2015
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:20, s. E2611-E2619
  • Journal article (peer-reviewed)abstract
    • Insulin resistance and beta-cell failure are the major defects in type 2 diabetes mellitus. However, the molecular mechanisms linking these two defects remain unknown. Elevated levels of apolipoprotein CIII (apoCIII) are associated not only with insulin resistance but also with cardiovascular disorders and inflammation. We now demonstrate that local apoCIII production is connected to pancreatic islet insulin resistance and beta-cell failure. An increase in islet apoCIII causes promotion of a local inflammatory milieu, increased mitochondrial metabolism, deranged regulation of beta-cell cytoplasmic free Ca2+ concentration ([Ca2+](i)) and apoptosis. Decreasing apoCIII in vivo results in improved glucose tolerance, and pancreatic apoCIII knockout islets transplanted into diabetic mice, with high systemic levels of the apolipoprotein, demonstrate a normal [Ca2+](i) response pattern and no hallmarks of inflammation. Hence, under conditions of islet insulin resistance, locally produced apoCIII is an important diabetogenic factor involved in impairment of beta-cell function and may thus constitute a novel target for the treatment of type 2 diabetes mellitus.
  •  
5.
  • Barker, CJ, et al. (author)
  • Phosphorylated inositol compounds in beta -cell stimulus-response coupling
  • 2002
  • In: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 283:6, s. E1113-E1122
  • Journal article (peer-reviewed)abstract
    • Pancreatic β-cell function is essential for the regulation of glucose homeostasis in humans, and its impairment leads to the development of type 2 diabetes. Inputs from glucose and cell surface receptors act together to initiate the β-cell stimulus-response coupling that ultimately leads to the release of insulin. Phosphorylated inositol compounds have recently emerged as key players at all levels of the stimulus-secretion coupling process. In this current review, we seek to highlight recent advances in β-cell phosphoinositide research by dividing our examination into two sections. The first involves the events that lead to insulin secretion. This includes both new roles for inositol polyphosphates, particularly inositol hexakisphosphate, and both conventional and 3-phosphorylated inositol lipids. In the second section, we deal with the more novel concept of the autocrine role of insulin. Here, released insulin initiates signal transduction cascades, principally through the activity of phosphatidylinositol 3-kinase. This new round of signal transduction has been established to activate key β-cell genes, particularly the insulin gene itself. More controversially, this insulin feedback has also been suggested to either terminate or enhance insulin secretion events.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 96

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view